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Abstract. Most U.S. voters cast hand-marked paper ballots that are
counted by optical scanners. Deployed ballot scanners typically utilize
simplistic mark-detection methods, based on comparing the measured
intensity of target areas to preset thresholds, but this technique is known
to sometimes misread “marginal” marks that deviate from ballot instruc-
tions. We investigate the feasibility of improving scanner accuracy using
supervised learning. We train a convolutional neural network to classify
various styles of marks extracted from a large corpus of voted ballots.
This approach achieves higher accuracy than a naive intensity threshold
while requiring far fewer ballots to undergo manual adjudication. It is
robust to imperfect feature extraction, as may be experienced in ballots
that lack timing marks, and efficient enough to be performed in real time
using contemporary central-count scanner hardware.

1 Introduction

Hand-marked paper ballots counted by optical scanners are the most popular
voting method in the United States, used by jurisdictions home to about 70%
of registered voters [29], and they are becoming even more prominent due to
the rapid expansion of postal voting spurred by the COVID-19 pandemic [13].
Despite its importance, optical scan voting faces two significant integrity chal-
lenges. First, deployed scanners suffer from a host of well-documented vulnera-
bilities (e.g., [2,11,14,15,18]). Second, and the focus of this study, even in the
absence of an attack, traditional scanning techniques sometimes fail to accu-
rately count some voter marks [12]. In principle, risk-limiting audits can address
both problems by ensuring that any fraud or error sufficient to change the out-
come of a contest is likely to be detected [17,24], but widespread adoption of
RLAs, even for Federal contests, may be a decade or more in the future. Given
that many major contests will not be subject to rigorous audits anytime soon,
it is important to ensure that scanners themselves count ballots as accurately as
practically possible.

Today’s ballot scanners typically employ variations of a relatively simplistic
technique [12,27]. After creating a digital image of the ballot, they identify the
voting targets and calculate the average shading within each target area, si. For
a predefined threshold α, target i is treated as marked whenever si ≥ α. Some
c© Springer Nature Switzerland AG 2021
R. Krimmer et al. (Eds.): E-Vote-ID 2021, LNCS 12900, pp. 17–32, 2021.
https://doi.org/10.1007/978-3-030-86942-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86942-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-86942-7_2


18 S. Barretto et al.

Fig. 1. Voted targets from Humboldt (top) and Pueblo (bottom) datasets. These scans
originate from Hart InterCivic and Dominion scanners, respectively. This difference is
reflected in the style of the targets and the quality of the scans.

modern scanners make use of a second threshold, β. If β ≤ si < α, the target is
treated as an ambiguous or marginal mark, and the ballot is set aside for officials
to manually determine the voter’s intent, in a process known as adjudication.

This technique performs well on ballots that have been properly marked, but
it sometimes falls short when handling ballots where the voter has not followed
the instructions precisely [12], as in many of the samples in Fig. 1. Often, voters
disregard ballot instructions and use other marks such as X-marks or check
marks to indicate their intent. As discussed in Sect. 3.1, we found that roughly
8.5% of marks in one large corpus of voted ballots were not filled as directed.
While humans can easily identify these “marginal” marks and typically interpret
them correctly, they may be challenging for current optical scanning systems to
process accurately. If marks are not dark enough, they may not meet either
threshold will therefore be ignored by current systems. Even in the case where
marks fall within the adjudication range, tabulating them imposes increased
labor costs for resource-constrained voting jurisdictions.

We investigate the feasibility of improving scanner accuracy and reducing
adjudication costs by applying supervised learning techniques. Using real voted
ballots, we train a convolutional neural network to classify a variety of mark
styles, including both properly marked targets and common marginal marks.
Compared to a generic implementation of mark recognition based on intensity
thresholds, our model achieves more accurate classification and lower rates of
adjudication. We further validate our technique using a second real-world ballot
corpus for which we have the results of scanning and adjudication reported in
the election, and achieve identical results in every case. These findings suggest
that our approach could improve scanner accuracy while reducing election costs.

2 Related Work

The challenging nature of ballot mark recognition has long been recognized and
is discussed at length by Jones [12] and Toledo et al. [27].

A number of previous studies have investigated methods for improving ballot
scanning. Several groups have approached the problem by combining computer
vision for feature extraction with human judgement for checking the interpreta-
tion of marks. In 2010, Cordero et al. proposed a method for efficiently verifying
the scanner’s mark interpretations by having humans review batches of ballot
images automatically superimposed on each other [6]. Wang et al. later developed
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OpenCount, a system that similarly automated feature extraction and provided
interactive tools for classifying voter marks [30]. Although our goal is to improve
automatic mark recognition and reduce reliance on operator input, these earlier
works could complement our techniques and result in further efficiency gains, if
applied to the ballots that our approach determines require manual adjudication.

More closely related to our approach, other prior work has applied supervised
learning to mark recognition. In 2009, Xiu et al. briefly investigated a classifica-
tion approach generally similar to ours, but based on modified quadratic discrim-
inant functions (MQDFs) instead of convolutional neural networks (CNNs) [31].
Although they reported strong performance, their dataset consisted of only a few
hundred ballots, making comparisons with real-world scanner performance diffi-
cult. A 2015 NIST study further benchmarked several ML-based approaches for
categorizing marginal marks [1], but their primary goal was to improve testing
of optical scanners rather than to surpass intensity-based mark detection.

3 Methods

In recent years, convolutional neural networks (CNNs) have become the industry
standard for image classification [26]. CNNs use a divide and conquer strategy to
classify images, attempting to gain a localized understanding of an image’s struc-
ture to identify key characteristics which are then used to classify the image as
a whole. For instance, in classifying marks on a ballot, one feature a CNN might
identify is lines at a 45◦ angle, corresponding to X-marks. We chose to use a two-
dimensional CNN, since it allows for the detection of multidimensional structures,
in contrast to a one-dimensional fully-connected network which would immedi-
ately flatten the image, losing the ability for the network to extract this type of
structural feature from the data. Another advantage of CNNs is that they use com-
paratively fewer parameters than fully connected networks, since they reuse their
parameters several times. This means that the model is easier to train because it
requires less data to achieve a higher accuracy and takes less time.

We developed our own CNN model and then tested it on ballot scans collected
from actual elections, evaluating its performance relative to a simple threshold-
based approach. It was not possible to obtain a currently marketed optical scan-
ner to use as a baseline for comparison, so we wrote our own implementation
closely modeled on the Dominion ImageCast scanner system, as described in
patents and court documents [7,22]. The Dominion system, which is used in
parts of 28 states [29], defaults to α = 35% and β = 12%, which we adopted for
our implementation. One advantage of using this baseline model rather than an
actual optical scanner was that both models used the same extracted features,
allowing for a truer comparison of their mark detection methods.

We decided to build a model that would classify individual targets as features
rather than examining entire pages. This way our model generalizes well across
different contests and page types, so long as the targets are the same shape and
size. Since the two datasets we used (described below) had differently shaped
targets, we used a separate model for each. Both models used the same CNN
architecture, but each was trained on different data.
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3.1 Data

The ballot scans we used came from two datasets: the November 2009 election in
Humboldt County, California and the November 2020 election in Pueblo County,
Colorado [23]. Initially, we used a representative subset of the Humboldt data,
consisting of 23,846 out of the 28,383 non-blank pages, which contained 149,394
voting targets. Later, to validate our approach, we used a subset of the Pueblo
dataset, which provided ballot scans as well as the official interpretation of each
target resulting from the real scanners and adjudication process. This allowed us
to directly compare the CNN model’s output to real election practice. From the
89,098 Pueblo County ballots, we used a representative subset of 1,719 ballots
that contained 147,121 voting targets. Each ballot consisted of multiple contests.
Some Humboldt contests allowed for only one vote while others allowed multiple
choices to be selected. Additionally, the ballots in both datasets did not have a
straight-ticket option, so most contests contained marked targets.

Labeling. To provide ground truth for the Humboldt data, we manually labeled
all of the targets in our subset. We started by labeling each ballot page type; for
purposes of this study, a page type is defined as a set of scans that contain the
same contests in the same relative locations on each page. We then labeled the
individual targets in two passes, according to two labeling schemes. In the first
pass, we labeled targets by the mark type, and in the second, by perceived voter
intent (0 for no vote, 1 for vote). The first schema is presented in Fig. 2, along
with a summary of the first pass of labeling. Approximately 69% of targets were
unmarked, 29% were properly marked, and 2.7% contained a marginal mark.

We verified our labels by comparing the election results published by Hum-
boldt County [10]. There was near perfect agreement for contests that had been
labeled completely, with the maximum difference being 15 out of 6529 votes (or
0.2%). Most contests were either in complete agreement or differed by only 1 or
2 votes. In all the contests where there was a mismatch, our vote totals were less
than the official counts. Upon investigation, most of the discrepancies were due to
malformed or flipped scans, which we did not label. The small residual disagree-
ment could be due to inaccuracies in the original count or our own human error.

Unlike the Humboldt scans, which were stored as grayscale images, the
Pueblo scans were 1-bit black and white. There may have been some faint
marginal marks on ballots that were undetected by the optical scanners and
were also missed by our manual labeling. In this case, all models would have
misclassified this type of mark, since it was lost at the scanning stage rather
than the interpretation stage.

Feature Extraction. The ballots in the Humboldt dataset lack timing marks,
and we found that the position and orientation of the ballot relative to the
scanned image was inconsistent across scans. To overcome this, we created a
template for each page type that indicated the location of each voting target
relative to the top-left corner of a rectangular printed border that surrounds
the ballot. We used OpenCV’s contour detection algorithm [3] to obtain the
coordinates of the corners of the border in each scan, then aligned the appropriate
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Mark Type Count

999,001kraMoN
Properly Marked 42,165
Marginal Mark:

X-Marked 1,115
Check-Marked 93
Lightly Marked 1,903
Partially Marked 489
Marked and Crossed Out 316

Bad Scan / Wrong contest 2,242
Other 72

493,941latoT

Fig. 2. Number of marks of different types in Humboldt dataset, as determined by
manual classification. 8.5% of the marks in this dataset were marginal marks.

template to extract all of the voting targets. This method accounted for the
common case of vertical and horizontal shifts of the ballot within the scans.
However, this method is not able to account for other kinds of scanning artifacts,
including ballots with nonlinear distortions due to misfeeding.

For the Pueblo dataset, the ballots contained timing marks, which provided
four points of reference for each individual target, giving us an extremely accu-
rate position for extraction. For each page type, we used OpenCV to identify the
timing marks corresponding to each target and used them to extract the target
regions. This was highly resilient to rotations and other scanner distortions.

Partitioning into Training and Test Data. We used a subset of the labeled
targets from each dataset for training and the remainder for testing. Of labeled
targets from the Humboldt dataset, 54% (corresponding to 12 out of 17 page
types) were used for training. For the Pueblo dataset, 75% were used for train-
ing. These differing splits were a matter of convenience. Both models exhibited
excellent performance, but we note that the larger amount of training data may
have benefited the performance of the Pueblo model relative to the Humboldt
model.

3.2 Baseline Model

We sought to compare our methods to the commonly used intensity-threshold
technique. Since we did not have access to a deployed ballot scanner, we created
our own implementation modeled after the Dominion system described in Sect. 2.
For each ballot, our baseline model considers all the extracted targets in a given
contest and predicts each target as either no vote, vote, or adjudicate. In practice,
a single adjudicated mark will result in the entire contest on that ballot being
reviewed by humans, so if any mark was predicted as adjudicate, we labeled all
the targets in that contest the same way.
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Dominion’s scanners create 1-bit-per-pixel bitmaps, as shown in Fig. 1. In
order to replicate this behavior using the grayscale Humboldt scans, we applied
Floyd-Steinberg dithering (a common graphics algorithm provided by the imag-
ing library we used [4]) to reduce the grayscale images to black and white while
approximately maintaining the average intensity within local regions.

The next step was to calculate the number of marked pixels inside the target
area. However, each feature consisted of not only the voter’s mark (inside the
target), but also the pre-printed target border and the area immediately outside
it. To account for this, we first converted our thresholds into raw pixel counts,
leveraging the fact that all targets had the same dimensions. Then we subtracted
the average number of black pixels occupied by the unmarked target border.

To allow for imperfect feature extraction, our baseline implementation con-
sidered a target area that is somewhat larger than the printed targets. Some
fielded scanners are known to do so as well, but to our knowledge the specifics
of this behavior are not well documented by any manufacturer. We note this as
a limitation of our baseline model. It is possible that real scanners differ in such
aspects and so would sometimes produce different results; however, we expect
variations based on marks outside the printed target to be uncommon. In our
datasets, such marks rarely occurred except in cases where the shading within
the printed target alone would have clearly been an intended mark.

3.3 CNN Model

Preprocessing. Before we could train our model, we needed to transform our
dataset. In order to decrease computational costs, we resized the cropped target
areas to 28 × 28 pixels with 8-bits-per-pixel of depth. We then stored them in
a three-dimensional array, X, parallel to their associated labels, y. Finally, we
normalized the pixel values in X to a 0–1 scale.

Our manual classification rubric included “lightly”, “partially”, and “prop-
erly” marked labels, but we later realized that the distinction between these
classes varied depending on who was assigning the label. Due to the subjectiv-
ity, we merged these classes prior to training. All three labels indicated that
the voter intended a mark; we reviewed the entire contest when making these
classifications, and in each case the voter’s intent was clear.

Finally, we made a second partition of the targets from those that were set
aside for training, reserving 85% for training and a standard 15% for validation.
This allowed us to train our model using various parameter combinations and
determine which were best by examining performance on the validation set. We
followed this process for both datasets independently.

Model Structure. The model we chose consisted of a single convolutional
layer with 25 filters of kernel size 3 × 3, stride 1, and no padding. The output
was passed through a ReLU nonlinearity, followed by a fully connected layer
with ReLU, and finally a second fully connected layer that culminated in seven
neurons. We used the softmax function to create a probability distribution from
the final layer weights and outputted our prediction as the class with the highest
probability.
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Fig. 3. The CNN architecture we used. Pictured layers appear from left to right in the
order they were applied. (Image generated using [16].)

A primary consideration while designing the model was the number of convo-
lutional layers. Models today can have upwards of 50 layers [9], but excess layers
can cause overfitting. Our dataset was relatively uncomplicated, with X-marks,
check marks, and marked and crossed-out marks being the most complicated
structures. We wanted a model capable of learning these structures but also
general enough to categorize all X-marks, regardless of their shape, size or ori-
entation, as an X-mark. We initially made the assumption that more layers would
result in higher accuracy, but in evaluating our model, we noticed that our train-
ing loss was significantly lower than testing loss, and our validation accuracy was
low, which suggested that the design was overfitting. This led us to use a shal-
lower model, reduced to one convolutional layer and with an increased number
of convolutional filters. We observed that this approach reduced overfitting and
significantly increased validation accuracy (Fig. 3).

Before trying a shallower model, we experimented with hyperparameter tun-
ing, as well as regularization methods such as dropout. We also attempted to
add a pooling layer, to downsample, and to reduce the number of parameters,
but found that these features were unnecessary due to the already low spatial
size of our images. The shallower model we settled on also had the side benefit
of faster training, allowing more iteration in our model development process.

We implemented our model using Keras and TensorFlow. We were able to
take advantage of the built-in convolutional and fully-connected layers while
having the flexibility to write our own evaluation metrics.

Hyperparameter Selection. One important hyperparameter was the evalua-
tion metric. Our ultimate goal is to produce a vote tally that comes as close as
possible to the collective will of the voters, and our model also should be intelli-
gible to voters, allowing people to understand how their votes are counted. With
these criteria in mind, accuracy is the most logical evaluation metric. For training
the model, however, simply trying to optimize for accuracy has its drawbacks.
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Fig. 4. Using 17 epochs optimizes validation F1 score while retaining low loss.

Since marginal marks account for such a small percentage of the data relative
to properly marked and blank marks, a model trained for accuracy would not
learn to classify these marks as well as their more prevalent counterparts. To
address this, we chose to use a model that optimizes F1 score, the harmonic
mean of precision and recall, which puts more weight on correctly classifying
these marginal marks. By optimizing for F1 score, we were able to produce a
model that had a higher overall accuracy compared to one that optimized for
accuracy directly.

The other traditional hyperparameters we selected were batch size and the
number of epochs. Based on a number of trial runs, we expect that a fairly
wide range of batch sizes would be appropriate; we chose 32. For the number of
epochs, we chose 17, which testing determined was past the point of diminishing
marginal returns for the F1 score while maintaining low loss, as shown in Fig. 4.

The final important hyperparameter was a threshold for confidence, which
we used to apply our trained model to an entire contest rather than individual
targets. That is, how confident did we need to be that all the targets in a contest
were classified correctly in order to not designate that ballot for adjudication? To
utilize this threshold, we first obtained the product of the label probabilities for
each of those targets, and then compared that value to the threshold. Similarly
to the baseline model, if this value was lower than the threshold then we would
send the entire contest for adjudication. We tested several threshold values and
obtained the best results with a threshold of 0.95 combined with adjudicating
any contest in which the classifier found three or more different types of marks.

3.4 Differences for Pueblo Dataset

Although the model structure for the Pueblo dataset was broadly similar to the
Humboldt model, we did not use the baseline model to evaluate it since we had
the scanner’s actual interpretation as ground truth. Each ballot in the dataset
included the officially counted votes (and the results of adjudication, if applica-
ble) as a final page in the scan, a feature that Dominion calls AuditMark [8].
We extracted these results using the Pytesseract optical character recognition
library (Fig. 5).
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Fig. 5. For Pueblo ballots, we used timing marks to extract targets, manually labeled
them, and passed these features to our CNN model.

Through manual and automated inspections of the Pueblo dataset, we estab-
lished that it contains far fewer marginal marks than the Humboldt data. This
may be due in part to Pueblo County acting to protect voter privacy by remov-
ing ballots with unusual styles of marks that were flagged for adjudication. For
this reason, we used the Pueblo dataset to test how a CNN model would perform
compared to current scanning systems under “ideal” ballot conditions—i.e., post
adjudication, limited marginal marks, and clear ballot instructions. Our goal was
to establish whether a CNN-based system would perform as well as current sys-
tems even under the circumstances where current systems are most accurate.

4 Evaluation and Results

To compare ballot scanning models, there are three distinct metrics to consider:
classification accuracy, number of ballots that require adjudication, and com-
putational cost. First, it is important that a model is as accurate as possible
because it is vital that the tabulated results match the intent of the voters. Sec-
ond, it is important to minimize ballots that require adjudication. In many states
such as Colorado, where the Pueblo dataset originated, ballots that are “kicked”
by scanners must be adjudicated by a bipartisan team of election judges who
determine how the vote should be counted by a set of criteria [5]. This process
is slow and potentially subjective. If a ballot scanner kicks too many ballots,
counting will be cost prohibitive. Finally, if the model is too slow, using it in
practice (such as in real-time as ballots are scanned) may be difficult.

Before accuracy could be computed, we needed to determine how targets
labeled as adjudicated should be handled when calculating accuracy. Our mod-
els assigned each target one of three labels—vote, no vote, or adjudicate. By
contrast, each target in the dataset was labeled as either a vote or a no vote.
When computing accuracy, we assumed all adjudicated ballots would be correctly
classified by the adjudication process. We separately evaluated the number of
ballots that required adjudication. We show results for these metrics in Fig. 6.

4.1 Baseline Model Performance

The baseline model performed better than we anticipated; however, it still strug-
gled where we expected. First, it sometimes classified targets with small or light
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Model Targets Accurately Classified Flagged for Adjudication

)%971.3(181,2)%598.99(045,86enilesaB
)%531.2(564,1)%569.99(885,86NNC
)%527.4(242,3)%879.99(795,861#dirbyH
)%726.0(034)%029.99(755,862#dirbyH

Fig. 6. Performance of each model on the Humboldt dataset. The CNN misclassifies
67% fewer targets and flags 33% fewer ballots for adjudication versus the baseline.

marks as no votes because these marks did not contain enough dark pixels to
pass either threshold and be classified as a vote or flagged for adjudication. Sec-
ond, the model often classified targets with marks that were filled in and crossed
out as votes, because these targets contained a higher percent than the second
threshold of dark pixels. Figure 7 shows examples of misclassified targets.

4.2 CNN Model Performance

By comparison, the CNN model outperformed the baseline model in both overall
accuracy and number of ballots sent to a human. It had 66.7% fewer misclassi-
fications and 32.8% fewer ballots flagged for adjudication versus the baseline.

The cases where the CNN model produced inaccurate classifications fell into a
few categories. First, it appeared to be more sensitive than the baseline model to
poor feature extraction and struggled off center targets. Fortunately, there exist
more sophisticated techniques for ballot feature extraction than was used in this
study [19]. Second, our model struggled with some of the X-marked targets. The
CNN model occasionally labeled these targets as empty, causing it to predict no
vote where a vote should have been. Figure 7 shows examples where the CNN
model failed, but we emphasize that its overall performance was clearly superior
to the baseline’s when comparing accuracy or adjudications.

Figure 8 shows how each model performed on targets the other classified
correctly, incorrectly, or adjudicated. Notably, all marks that the CNN model
misclassified were also misclassified or flagged for adjudication by the baseline
model.

(a) Baseline (b) CNN (c) Both

Fig. 7. Examples of misclassified targets from Humboldt ballots. The CNN performed
better overall, but it failed in some cases with X marks or off-center targets.
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Baseline
Correct Adjudicate Incorrect

CNN
Correct 65,355 1,742 26
Adjudicate 1,004 430 31
Incorrect 0 9 15

Fig. 8. Overlapping performance of each model on 68,612 Humboldt targets.

4.3 Computational Costs

An additional metric to consider is computational cost. For the CNN, the most
computationally expensive step was training the model. However, training need
only be done once for each type of scanner hardware and style of voting target.

Ideally, a pre-trained model can predict labels for ballots at least as fast as
they are scanned in, ensuring that the model is not a limiting component of
the device as a whole. Today, a typical speed rating for a high-speed central-
count optical scanner is on the order of 300 ballots per minute [28]. Different
ballots contain vastly different numbers of targets, but an upper bound estimate
for a traditional-style ballot might be 128 targets per page. With double-sided
ballots, the high-speed scanner would need to process 1280 targets per second
to keep up. Both the pre-fitted CNN and the baseline model far exceeded this
rate, taking less than a second on a mid-line laptop to label the extracted,
preprocessed features from the 68,612 targets in our test dataset. (Although
feature extraction adds additional costs, these are the same with both models.)
This indicates that the CNN approach can outperform the baseline in both
accuracy and adjudication frequency while performing fast enough to keep pace
with modern scanners.

4.4 Hybrid Models

After examining the results from the baseline and CNN models, we considered
additional models that involved combining the two. We optimized the first of
these hybrid models for accuracy. In this model, we flagged a contest’s tar-
gets for adjudication if either the baseline model or the CNN model labeled
any of that contest’s targets as adjudicate, or if the two models disagreed on
their predictions. This hybrid achieved a higher overall accuracy than either
model alone. However, it also required adjudicating significantly more targets
than either model alone did. Since this model was better than the CNN model
by accuracy but worse by number of ballots adjudicated, it is not clearly an
improvement. It is also worth noting that similar results might be possible from
the CNN alone by increasing the confidence threshold at which the CNN model
flags ballots for adjudication.

The second combined model we considered strove to maintain accuracy while
reducing the number of ballots adjudicated. In this hybrid, we used the CNN
model as a primary classifier, and when the CNN model chose to adjudicate,
we used the baseline model to try to classify the target first. By accuracy, this
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model was still better than the baseline model but not as good as the CNN
alone. By number of adjudications, this method was highly effective. It would be
interesting to investigate if one could increase the accuracy of this type of hybrid
model by increasing the confidence threshold of the CNN. Like the first hybrid
model, since this model was better than the CNN in one aspect but worse in the
other, we cannot conclude which is decisively better. Figure 6 shows results for
both hybrids.

4.5 Optimized Baseline Model

In addition to the performances of combined CNN and baseline models, we
also investigated how a baseline model with different thresholds would have
performed compared to the CNN. By starting with the Humboldt voting results
and working backwards, it was possible to use a brute force approach to calculate
which thresholds would produce the optimal results for this specific dataset given
either a minimum accuracy or maximum adjudication rate condition.

If we insist that the baseline model achieves a lower adjudication rate than
the CNN, α = 13.2% and β = 8.1% maximized accuracy. This modified baseline
achieved an accuracy of 99.862%—worse than even the original baseline model—
and an adjudication rate of 2.035%. Likewise, if we modify the baseline model
to have an accuracy higher than the CNN model, α = 99.8% and β = 1.7% min-
imized adjudication. While this model had an accuracy of 99.968%, it would be
virtually pointless as 97.042% of all contests required adjudication. This strongly
suggests that there are types of marks, such as those marked and then crossed
out, that simply cannot be correctly identified by a model that only looks at the
shading of the target area.

4.6 Pueblo Test Results

We used the Pueblo dataset to more directly compare the CNN model to a
deployed election system and to address concerns about whether a CNN could
sometimes harm results. That is, in elections where current scanners perform
well, would a CNN achieve a comparable accuracy? Once we had determined
the efficacy of a CNN for the relatively messy Humboldt dataset, we retrained
our model on the comparatively clean Pueblo dataset. Retraining was neces-
sary, because the datasets use different styles of voting targets, and the raw
scans, which were captured on different types of hardware, have vastly different
intensity response characteristics. We used the same model architecture, only
changing input/output sizes for the model layers. This model achieved similar
training accuracy and loss to the Humboldt CNN model.

The Pueblo CNN model found 36 contests on 24 ballots with an overvote.
When combined with 161 targets where feature extraction failed, this amounted
to 0.0067% of the targets in the test dataset, and after accounting for the over-
votes, the Pueblo model agreed with the post-adjudication ballot interpretations
from the real election for every target in the test dataset of about 35,000 tar-
gets. This suggests that a CNN can produce accuracy as good as state-of-the-art
deployed systems, while potentially requiring fewer ballots to be adjudicated.
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Since the Pueblo dataset had extremely few marginal marks, the baseline
also had a very high accuracy and made almost no mistakes, leaving little room
to improve upon the accuracy. However, our previous experiments showed that
on datasets with a larger variety of marks, such as the Humboldt ballots, our
CNN approach can achieve significant improvements to accuracy.

5 Discussion

We trained CNN models on the Humboldt dataset and the Pueblo dataset and
found that they match or outperform the baseline threshold-intensity approach
in terms of the number of correctly labeled targets and the number of ballots
that require adjudication by election officials. A similar approach could be imple-
mented in future elections. Scanner manufacturers could each train a model once
on ballots that reflect their particular style of voting targets (e.g., ovals or rect-
angles) and hardware imaging characteristics (e.g., grayscale or one-bit black
and white), then implement the model in a software update for their machines.
This would potentially benefit future elections in multiple ways.

The benefits to increased labeling accuracy are clear. Better target classi-
fications mean election results will better match voter intent. Demonstrated
accuracy improvements may also increase public trust in the election process.
Additionally, despite the expert consensus regarding the importance of rigorous
post-election audits as a defense against both fraud and error [20], many states
still do not require any form of tabulation audit, and very few perform risk-
limiting audits [21]. As a result, the outcomes of the vast majority of contests
currently depend on the accuracy of ballot scanners. Even when audits or manual
recounts are applied, it is important for initial machine counts to be accurate,
because if the audit or recount shows different counts, public confidence is likely
to be eroded.

One of the biggest benefits of adjudicating fewer ballots is the time saved.
When an absentee ballot is sent for review, election officials need to analyze
it in the presence of multiple observers, determine voter intent, and then (for
manual adjudication processes) copy the voter intent onto a new ballot and
scan it. Reducing adjudication will save administrative costs and improve the
speed at which election results are tabulated—which may help further increase
voter confidence. Moreover, reducing the number of times voter intent needs to
be determined by humans will reduce the potential for bias, subjectivity, and
disputes.

5.1 Future Work

Our results suggest that application of machine learning techniques can achieve
substantial improvements for the ballot scanning process, but we emphasize that
far more work is possible. While our model was able classify targets correctly
with greater than 99.9% accuracy, outperforming the baseline model, there are
numerous improvements that can be made to further enhance the performance
of supervised learning techniques and better understand voter intent.
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First, although our CNN model matched the performance of an actual scan-
ner for the Pueblo dataset, which had very few marginal marks, further work
is needed to more rigorously quantify the gains from CNN techniques against
actual deployed scanners when marginal marks are more common. The base-
line model we implemented may be more capable towards marginal marks than
some currently deployed tabulators, since it considers intensity within a fairly
large region around the voting target, and so may underestimate the potential
improvements.

Second, performance can very likely be enhanced by improving on the rather
basic feature extraction methods that we used in the bulk of our experiments.
Most of the mistakes in the Humboldt model originated from our target crops not
being centered. A model trained on more structurally uniform, less variable data
should better classify targets. In the Pueblo dataset, our feature extraction used
timing marks and was more accurate than the Humboldt extraction. However,
not all ballots utilize timing marks, and those that do not would benefit from
the application of more sophisticated existing target extraction techniques (e.g.,
[30]).

Third, the performance of the CNN model can likely be greatly improved by
training on a larger corpus of marginal marks, particular X-marks, check marks,
and marked-and-crossed-out marks. With more data from these classes, models
will be even better equipped to correctly classify these less common marks.
Election officials could help accelerate this process by making larger and more
complete datasets of scanned ballots available for research.

Fourth, more research is needed to investigate how ML techniques might
provide even greater flexibility in understanding voter intent, such as by recog-
nizing and processing marks that are not in the voting targets or in the small
area around them. We found several examples of voters making marks and even
writing in the margins of the ballots. These marks get ignored by both the
current system and by our model. Scanners could potentially make better use
of these marks for deciphering voter intent, whether by intelligently processing
them or merely recognizing when they call for adjudication.

Finally, there is some evidence that demographic disparities exist in the rate
of voter error when using existing ballot scanners [25, p. 19]. Since CNN models
perform better when interpreting marginal marks, they might help reduce this
bias. Research is needed to fully understand the causes and extent of bias in
existing systems and to test how adopting a CNN model would affect it.

6 Conclusion

Marginal marks are a common feature on hand marked paper ballots, and current
ballot scanning systems do not adequately account for them. In one dataset, we
found that 8.5% of marked targets were not filled in completely, but rather
consisted of X-marks, check marks, lightly filled targets, partially filled targets,
and various forms of crossed-out targets. While traditional intensity-threshold
methods are often able to classify such marginal marks correctly, we identified
numerous cases where they either fail or require unnecessary human intervention.
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By accounting for different kinds of marks and using a CNN trained to iden-
tify them, we were able to make ballot scanning more accurate. Compared to the
baseline, we found that our model correctly classifies more targets and reduces
the number of ballots sent to humans for review. While additional work is needed,
our research indicates that supervised learning has the potential to make ballot
scanning smarter by counting ballots both faster and more accurately.
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