
May 2009 | Vol. 52 | no. 5 | communications of the acm 91

Lest We Remember: Cold-Boot
Attacks on Encryption Keys
By J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul,
Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten

Doi:10.1145/1506409.1506429

abstract
Contrary to widespread assumption, dynamic RAM (DRAM),
the main memory in most modern computers, retains its
contents for several seconds after power is lost, even at
room temperature and even if removed from a mother-
board. Although DRAM becomes less reliable when it is not
refreshed, it is not immediately erased, and its contents
persist sufficiently for malicious (or forensic) acquisition of
usable full-system memory images. We show that this phe-
nomenon limits the ability of an operating system to protect
cryptographic key material from an attacker with physical
access to a machine. It poses a particular threat to laptop
users who rely on disk encryption: we demonstrate that it
could be used to compromise several popular disk encryp-
tion products without the need for any special devices or
materials. We experimentally characterize the extent and
predictability of memory retention and report that rema-
nence times can be increased dramatically with simple
cooling techniques. We offer new algorithms for finding
cryptographic keys in memory images and for correcting
errors caused by bit decay. Though we discuss several strate-
gies for mitigating these risks, we know of no simple remedy
that would eliminate them.

1. intRoDuction
Most security practitioners have assumed that a computer’s
memory is erased almost immediately when it loses power,
or that whatever data remains is difficult to retrieve without
specialized equipment. We show that these assumptions are
incorrect. Dynamic RAM (DRAM), the hardware used as the
main memory of most modern computers, loses its contents
gradually over a period of seconds, even at normal operat-
ing temperatures and even if the chips are removed from
the motherboard. This phenomenon is called memory rema-
nence. Data will persist for minutes or even hours if the chips
are kept at low temperatures, and residual data can be recov-
ered using simple, nondestructive techniques that require
only momentary physical access to the machine.

We present a suite of attacks that exploit DRAM rema-
nence to recover cryptographic keys held in memory. They
pose a particular threat to laptop users who rely on disk
encryption products. An adversary who steals a laptop while
an encrypted disk is mounted could employ our attacks to
access the contents, even if the computer is screen-locked or
suspended when it is stolen.

On-the-fly disk encryption software operates between the
file system and the storage driver, encrypting disk blocks as
they are written and decrypting them as they are read. The

encryption key is typically protected with a password typed
by the user at login. The key needs to be kept available so
that programs can access the disk; most implementations
store it in RAM until the disk is unmounted.

The standard argument for disk encryption’s security
goes like this: As long as the computer is screen-locked
when it is stolen, the thief will not be able to access the disk
through the operating system; if the thief reboots or cuts
power to bypass the screen lock, memory will be erased and
the key will be lost, rendering the disk inaccessible. Yet, as
we show, memory is not always erased when the computer
loses power. An attacker can exploit this to learn the encryp-
tion key and decrypt the disk. We demonstrate this risk by
defeating several popular disk encryption systems, includ-
ing BitLocker, TrueCrypt, and FileVault, and we expect many
similar products are also vulnerable.

Our attacks come in three variants of increasing resis-
tance to countermeasures. The simplest is to reboot the
machine and launch a custom kernel with a small memory
footprint that gives the adversary access to the residual
memory. A more advanced attack is to briefly cut power to the
machine, then restore power and boot a custom kernel; this
deprives the operating system of any opportunity to scrub
memory before shutting down. An even stronger attack is
to cut the power, transplant the DRAM modules to a second
PC prepared by the attacker, and use it to extract their state.
This attack additionally deprives the original BIOS and PC
hardware of any chance to clear the memory on boot.

If the attacker is forced to cut power to the memory for
too long, the data will become corrupted. We examine two
methods for reducing corruption and for correcting errors
in recovered encryption keys. The first is to cool the memory
chips prior to cutting power, which dramatically prolongs
data retention times. The second is to apply algorithms we
have developed for correcting errors in private and sym-
metric keys. These techniques can be used alone or in
combination.

While our principal focus is disk encryption, any sensi-
tive data present in memory when an attacker gains physical
access to the system could be subject to attack. For example,
we found that Mac OS X leaves the user’s login password in
memory, where we were able to recover it. SSL-enabled Web

The full version of this paper was published in Proceed-
ings of the 17th USENIX Security Symposium, August 2008,
USENIX Association. The full paper, video demonstrations,
and source code are available at http://citp.princeton.edu/
memory/.

92 communications of the acm | May 2009 | Vol. 52 | no. 5

research highlights

servers are vulnerable, since they normally keep in memory
private keys needed to establish SSL sessions. DRM systems
may also face potential compromise; they sometimes rely
on software to prevent users from accessing keys stored in
memory, but attacks like the ones we have developed could
be used to bypass these controls.

It may be difficult to prevent all the attacks that we
describe even with significant changes to the way encryption
products are designed and used, but in practice there are a
number of safeguards that can provide partial resistance.
We suggest a variety of mitigation strategies ranging from
methods that average users can employ today to long-term
software and hardware changes. However, each remedy has
limitations and trade-offs, and we conclude that there is no
simple fix for DRAM remanence vulnerabilities.

Certain segments of the computer security and hard-
ware communities have been conscious of DRAM rema-
nence for some time, but strikingly little about it has been
published. As a result, many who design, deploy, or rely
on secure systems are unaware of these phenomena or
the ease with which they can be exploited. To our knowl-
edge, ours is the first comprehensive study of their security
consequences.

2. chaRacteRiZing Remanence
A DRAM cell is essentially a capacitor that encodes a single
bit when it is charged or discharged.10 Over time, charge
leaks out, and eventually the cell will lose its state, or, more
precisely, it will decay to its ground state, either zero or one
depending on how the cell is wired. To forestall this decay,
each cell must be refreshed, meaning that the capacitor must
be recharged to hold its value—this is what makes DRAM
“dynamic.” Manufacturers specify a maximum refresh
interval—the time allowed before a cell is recharged—that
is typically on the order of a few milliseconds. These times
are chosen conservatively to ensure extremely high reliabil-
ity for normal computer operations where even infrequent
bit errors can cause problems, but, in practice, a failure to
refresh any individual DRAM cell within this time has only a
tiny probability of actually destroying the cell’s contents.

To characterize DRAM decay, we performed experiments
on a selection of recent computers, listed in Figure 1. We
filled representative memory regions with a pseudoran-
dom test pattern, and read back the data after suspending
refreshes for varying periods of time by cutting power to the
machine. We measured the error rate for each sample as

the number of bit errors (the Hamming distance from the
pattern we had written) divided by the total number of bits.
Fully decayed memory would have an error rate of approxi-
mately 50%, since half the bits would match by chance.

2.1. Decay at operating temperature
Our first tests measured the decay rate of each machine’s
memory under normal operating temperature, which
ranged from 25.5°C to 44.1°C. We found that the decay
curves from different machines had similar shapes, with
an initial period of slow decay, followed by an intermediate
period of rapid decay, and then a final period of slow decay,
as shown in Figure 2.

The dimensions of the decay curves varied considerably
between machines, with the fastest exhibiting complete
data loss in approximately 2.5 s and the slowest taking over
a minute. Newer machines tended to exhibit a shorter time
to total decay, possibly because newer chips have higher
density circuits with smaller cells that hold less charge, but
even the shortest times were long enough to enable some
of our attacks. While some attacks will become more dif-
ficult if this trend continues, manufacturers may attempt
to increase retention times to improve reliability or lower
power consumption.

We observed that the DRAMs decayed in highly nonuni-
form patterns. While these varied from chip to chip, they
were very stable across trials. The most prominent pattern is
a gradual decay to the ground state as charge leaks out of the
memory cells. In the decay illustrated in Figure 3, blocks of
cells alternate between a ground state of zero and a ground
state of one, resulting in the horizontal bars. The fainter
vertical bands in the figure are due to manufacturing varia-
tions that cause cells in some parts of the chip to leak charge
slightly faster than those in others.

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

50

55

Seconds without power

D
ec

ay
 (%

) B Data

B Fit

D Data

D Fit

E Data

E Fit

F Data

F Fit

figure 2: measuring decay. We measured memory decay after
 various intervals without power. the memories were running at
normal operating temperature, without any special cooling. curves
for machines a and c would be off the scale to the right, with rapid
decay at around 30 and 15 s, respectively.

figure 1: test systems. We experimented with six systems (designated
a–f) that encompass a range of recent DRam architectures and circuit
densities.

 Density type system Year

a 128mB SDRam Dell Dimension 4100 1999
B 512mB DDR Toshiba Portégé R100 2001
C 256mB DDR Dell Inspiron 5100 2003
D 512mB DDR2 IBm Thinkpad T43p 2006
E 512mB DDR2 IBm Thinkpad x60 2007
F 512mB DDR2 lenovo 3000 n100 2007

May 2009 | Vol. 52 | no. 5 | communications of the acm 93

2.2. Decay at reduced temperature
Colder temperatures are known to increase data retention
times. We performed another series of tests to measure
these effects. On machines A–D, we loaded a test pattern
into memory, and, with the computer running, cooled
the memory module to approximately −50°C. We then cut
power to the machine and maintained this temperature
until power and refresh were restored. As expected, we
observed significantly slower rates of decay under these
reduced temperatures (see Figure 4). On all of our test
systems, the decay was slow enough that an attacker who
cut power for 1 min would recover at least 99.9% of bits
correctly.

We were able to obtain even longer retention times by
cooling the chips with liquid nitrogen. After submerging
the memory modules from machine A in liquid nitrogen for
60 min, we measured only 14,000 bit errors within a 1MB
test region (0.13% decay). This suggests that data might be
recoverable for hours or days with sufficient cooling.

3. tooLs anD attacks
Extracting residual memory contents requires no special
equipment. When the system is powered on, the memory
controller immediately starts refreshing the DRAM, read-
ing and rewriting each bit value. At this point, the values
are fixed, decay halts, and programs running on the system
can read any residual data using normal memory-access
instructions.

One challenge is that booting the system will necessar-
ily overwrite some portions of memory. While we observed
in our tests that the BIOS typically overwrote only a small
fraction of memory, loading a full operating system would
be very destructive. Our solution is to use tiny special-pur-
pose programs that, when booted from either a warm or
cold reset state, copy the memory contents to some external

figure 3: Visualizing memory decay. We loaded a bitmap image into memory on test machine a, then cut power for varying intervals. after
5 s (left), the image is nearly indistinguishable from the original; it gradually becomes more degraded, as shown after 30, 60 s, and 5 min.
the chips remained close to room temperature. even after this longest trial, traces of the original remain. the decay shows prominent
 patterns caused by regions with alternating ground states (horizontal bars) and by physical variations in the chip (fainter vertical bands).

medium with minimal disruption to the original state.
Most modern PCs support network booting via Intel’s

Preboot Execution Environment (PXE), which provides rudi-
mentary start-up and network services. We implemented
a tiny (9KB) standalone application that can be booted
directly via PXE and extracts the contents of RAM to another
machine on the network. In a typical attack, a laptop con-
nected to the target machine via an Ethernet crossover cable
would run a client application for receiving the data. This
tool takes around 30 s to copy 1GB of RAM.

Some recent computers, including Intel-based Macintosh
systems, implement the Extensible Firmware Interface
(EFI) instead of a PC BIOS. We implemented a second mem-
ory extractor as an EFI netboot application. Alternatively,
most PCs can boot from an external USB device such as a
USB hard drive or flash device. We created a third imple-
mentation in the form of a 10KB plug-in for the SYSLINUX

figure 4: colder temperatures slow decay. We measured memory
errors for machines a–D after intervals without power, first at
normal operating temperatures (no cooling) and then at a reduced
temperature of −50°c. Decay occurred much more slowly under the
colder conditions.

 average Bit errors

 seconds without Power no cooling (%) -50∞c (%)

a 60 41 [no errors]
 300 50 0.000095

B 360 50 [no errors]
 600 50 0.000036

C 120 41 0.00105
 360 42 0.00144

D 40 50 0.025
 80 50 0.18

94 communications of the acm | May 2009 | Vol. 52 | no. 5

research highlights

bootloader. It can be booted from an external USB device or
a regular hard disk.

An attacker could use tools like these in a number of ways,
depending on his level of access to the system and the coun-
termeasures employed by hardware and software. The sim-
plest attack is to reboot the machine and configure the BIOS
to boot the memory extraction tool. A warm boot, invoked
with the operating system’s restart procedure, will normally
ensure that refresh is not interrupted and the memory has
no chance to decay, though software will have an opportu-
nity to wipe sensitive data. A cold boot, initiated using the
system’s restart switch or by briefly removing power, may
result in a small amount of decay, depending on the memory’s
retention time, but denies software any chance to scrub
memory before shutting down.

Even if an attacker cannot force a target system to boot
memory extraction tools, or if the target employs coun-
termeasures that erase memory contents during boot, an
attacker with sufficient physical access can transfer the
memory modules to a computer he controls and use it to
extract their contents. Cooling the memory before power-
ing it off slows the decay sufficiently to allow it to be trans-
planted with minimal data loss. As shown in Figure 5,
widely available “canned air” dusting spray can be used to
cool the chips to −50°C and below. At these temperatures
data can be recovered with low error rates even after several
minutes.

4. keY ReconstRuction
The attacker’s task is more complicated when the memory
is partially decayed, since there may be errors in the cryp-
tographic keys he extracts, but we find that attacks can
remain practical. We have developed algorithms for correct-
ing errors in symmetric and private keys that can efficiently
reconstruct keys when as few as 27% of the bits are known,
depending on the type of key.

Our algorithms achieve significantly better performance
than brute force by considering information other than the
actual key. Most cryptographic software is optimized by stor-
ing data precomputed from the key, such as a key schedule
for block ciphers or an extended form of the private key for
RSA. This data contains much more structure than the key

itself, and we can use this structure to perform efficient error
correction.

These results imply a trade-off between efficiency and
security. All of the disk encryption systems we studied pre-
compute key schedules and keep them in memory for as
long as the encrypted disk is mounted. While this practice
saves some computation for each disk access, we find that it
also facilitates attacks.

Our algorithms make use of the fact that most decay is
unidirectional. In our experiments, almost all bits decayed
to a predictable ground state with only a tiny fraction flip-
ping in the opposite direction. In practice, the probability
of decaying to the ground state approaches 1 as time goes
on, while the probability of flipping in the opposite direc-
tion remains tiny—less than 0.1% in our tests. We further
assume that the ground state decay probability is known
to the attacker; it can be approximated by comparing the
fractions of zeros and ones in the extracted key data and
assuming that these were roughly equal before the data
decayed.

4.1. Reconstructing Des keys
We begin with a relatively simple application of these
ideas: an error-correction technique for DES keys. Before
software can encrypt or decrypt data with DES, it must
expand the secret key K into a set of round keys that are used
internally by the cipher. The set of round keys is called the
key schedule; since it takes time to compute, programs typi-
cally cache it in memory as long as K is in use. The DES key
schedule consists of 16 round keys, each a permutation of
a 48-bit subset of bits from the original 56-bit key. Every bit
from the key is repeated in about 14 of the 16 round keys.

We begin with a partially decayed DES key schedule. For
each bit of the key, we consider the n bits extracted from
memory that were originally all identical copies of that
key bit. Since we know roughly the probability that each
bit decayed 0 → 1 or 1 → 0, we can calculate whether the
extracted bits were more likely to have resulted from the
decay of reptitions of 0 or repetitions of 1.

If 5% of the bits in the key schedule have decayed to the
ground state, the probability that this technique will get any
of the 56 bits of the key wrong is less than 10−8. Even if 25% of

figure 5: advanced cold-boot attack. in our most powerful attack, the attacker reduces the temperature of the memory chips while the
computer is still running, then physically moves them to another machine configured to read them without overwriting any data. Before
powering off the computer, the attacker can spray the chips with “canned air,” holding the container in an inverted position so that it discharges
cold liquid refrigerant instead of gas (left). this cools the chips to around −50∞c (middle). at this temperature, the data will persist for several
minutes after power loss with minimal error, even if the memory modules are removed from the computer (right).

May 2009 | Vol. 52 | no. 5 | communications of the acm 95

the bits in the key schedule are in error, the probability that
we can correctly reconstruct the key without resorting to a
brute force search is more than 98%.

4.2. Reconstructing aes keys
AES is a more modern cipher than DES, and it uses a key
schedule with a more complex structure, but nevertheless
we can efficiently reconstruct keys. For 128-bit keys, the AES
key schedule consists of 11 round keys, each made up of four
32-bit words. The first round key is equal to the key itself.
Each subsequent word of the key schedule is generated either
by XORing two earlier words, or by performing an operation
called the key schedule core (in which the bytes of a word are
rotated and each byte is mapped to a new value) on an earlier
word and XORing the result with another earlier word.

Instead of trying to correct an entire key at once, we can
examine a smaller set of the bits at a time and then combine
the results. This separability is enabled by the high amount
of linearity in the key schedule. Consider a “slice” of the first
two round keys consisting of byte i from words 1 to 3 of the
first two round keys, and byte i − 1 from word 4 of the first
round key (see Figure 6). This slice is 7 bytes long, but it is
uniquely determined by the 4 bytes from the first round key.

Our algorithm exploits this fact as follows. For each pos-
sible set of 4 key bytes, we generate the relevant 3 bytes of
the next round key, and we order these possibilities by the
likelihood that these 7 bytes might have decayed to the corre-
sponding bytes extracted from memory. Now we may recom-
bine four slices into a candidate key, in order of decreasing
likelihood. For each candidate key, we calculate the key
schedule. If the likelihood of this key schedule decaying to
the bytes we extracted from memory is sufficiently high, we
output the corresponding key.

When the decay is largely unidirectional, this algorithm
will almost certainly output a unique guess for the key. This
is because a single flipped bit in the key results in a cascade
of bit flips through the key schedule, half of which are likely
to flip in the “wrong” direction.

Our implementation of this algorithm is able to recon-
struct keys with 7% of the bits decayed in a fraction of a sec-
ond. It succeeds within 30 s for about half of keys with 15%
of bits decayed.

We have extended this idea to 256-bit AES keys and to
other ciphers. See the full paper for details.

4.3. Reconstructing Rsa private keys
An RSA public key consists of the modulus N and the public
exponent e, while the private key consists of the private expo-
nent d and several optional values: prime factors p and q of
N, d mod (p − 1), d mod (q − 1), and q−1 mod p. Given N and e,
any of the private values is sufficient to efficiently generate
the others. In practice, RSA implementations store some or
all of these values to speed computation.

In this case, the structure of the key information is the
mathematical relationship between the fields of the public
and private key. It is possible to iteratively enumerate poten-
tial RSA private keys and prune those that do not satisfy
these relationships. Subsequent to our initial publication,
Heninger and Shacham11 showed that this leads to an algo-
rithm that is able to recover in seconds an RSA key with all
optional fields when only 27% of the bits are known.

5. iDentifYing keYs in memoRY
After extracting the memory from a running system, an
attacker needs some way to locate the cryptographic keys.
This is like finding a needle in a haystack, since the keys
might occupy only tens of bytes out of gigabytes of data.
Simple approaches, such as attempting decryption using
every block of memory as the key, are intractable if the mem-
ory contains even a small amount of decay.

We have developed fully automatic techniques for locat-
ing encryption keys in memory images, even in the presence
of errors. We target the key schedule instead of the key itself,
searching for blocks of memory that satisfy the properties of
a valid key schedule.

Although previous approaches to key recovery do not
require a key schedule to be present in memory, they have
other practical drawbacks that limit their usefulness for our
purposes. Shamir and van Someren16 conjecture that keys
have higher entropy than the other contents of memory and
claim that they should be distinguishable by a simple visual
test. However, even perfect copies of memory often contain
large blocks of random-looking data (e.g., compressed files).
Pettersson15 suggests locating program data structures con-
taining key material based on the range of likely values for
each field. This approach requires the manual derivation of
search heuristics for each cryptographic application, and it
is not robust to memory errors.

We propose the following algorithm for locating sched-
uled AES keys in extracted memory:

Iterate through each byte of memory. Treat that address 1.
as the start of an AES key schedule.
Calculate the Hamming distance between each word 2.
in the potential key schedule and the value that would
have been generated from the surrounding words in a
real, undecayed key schedule.
If the sum of the Hamming distances is sufficiently 3.
low, the region is close to a correct key schedule; out-
put the key.

We implemented this algorithm for 128- and 256-bit AES
keys in an application called keyfind. The program receives
extracted memory and outputs a list of likely keys. It assumes

figure 6: error correction for aes keys. in the aes-128 key schedule,
4 bytes from each round key completely determine 3 bytes of the
next round key, as shown here. our error correction algorithm
“slices” the key into four groups of bytes with this property. it
computes a list of likely candidate values for each slice, then
checks each combination to see if it is a plausible key.

Round Key 1

Round Key 2

Core

96 communications of the acm | May 2009 | Vol. 52 | no. 5

research highlights

that key schedules are contiguous regions of memory in the
byte order used in the AES specification; this can be adjusted
for particular cipher implementations. A threshold param-
eter controls how many bit errors will be tolerated.

As described in Section 6, we successfully used key-
find to recover keys from closed-source disk encryption
programs without having to reverse engineer their key data
structures. In other tests, we even found key schedules that
were partially overwritten after the memory where they were
stored was reallocated.

This approach can be applied to many other ciphers,
including DES. To locate RSA keys, we can search for known
key data or for characteristics of the standard data structure
used for storing RSA private keys; we successfully located
the SSL private keys in memory extracted from a computer
 running Apache 2.2.3 with mod_ssl. For details, see the full
version of this paper.

6. attacking encRYPteD Disks
We have applied the tools developed in this paper to defeat
several popular on-the-fly disk encryption systems, and we
suspect that many similar products are also vulnerable. Our
results suggest that disk encryption, while valuable, is not
necessarily a sufficient defense against physical data theft.

6.1. BitLocker
BitLocker is a disk encryption feature included with some ver-
sions of Windows Vista and Windows 7. It operates as a filter
driver that resides between the file system and the disk driver,
encrypting and decrypting individual sectors on demand.
As described in a paper by Niels Ferguson of Microsoft,8 the
BitLocker encryption algorithm encrypts data on the disk
using a pair of AES keys, which, we discovered, reside in RAM
in scheduled form for as long as the disk is mounted.

We created a fully automated demonstration attack
tool called BitUnlocker. It consists of an external USB hard
disk containing a Linux distribution, a custom SYSLINUX-
based bootloader, and a custom driver that allows BitLocker
 volumes to be mounted under Linux. To use it against a run-
ning Windows system, one cuts power momentarily to reset
the machine, then connects the USB disk and boots from the
external drive. BitUnlocker automatically dumps the memory
image to the external disk, runs keyfind to locate candidate
keys, tries all combinations of the candidates, and, if the cor-
rect keys are found, mounts the BitLocker encrypted volume.
Once the encrypted volume has been mounted, one can browse
it using the Linux distribution just like any other volume.

We tested this attack on a modern laptop with 2GB of RAM.
We rebooted it by removing the battery and cutting power
for less than a second; although we did not use any cooling,
BitUnlocker successfully recovered the keys with no errors and
decrypted the disk. The entire automated process took around
25 min, and optimizations could greatly reduce this time.

6.2. fileVault
Apple’s FileVault disk encryption software ships with recent ver-
sions of Mac OS X. A user-supplied password decrypts a header
that contains both an AES key used to encrypt stored data and a
second key used to compute IVs (initialization vectors).18

We used our EFI memory extraction program on an
Intel-based Macintosh system running Mac OS X 10.4 with
a FileVault volume mounted. Our keyfind program auto-
matically identified the FileVault AES encryption key, which
did not contain any bit errors in our tests.

As for the IV key, it is present in RAM while the disk is
mounted, and if none of its bits decay, an attacker can iden-
tify it by attempting decryption using all appropriately sized
substrings of memory. FileVault encrypts each disk block in
CBC (cipher-block chaining) mode, so even if the attacker
cannot recover the IV key, he can decrypt 4080 bytes of each
4096 byte disk block (all except the first cipher block) using
only the AES key. The AES and IV keys together allow full
decryption of the volume using programs like vilefault.18

6.3. truecrypt, dm-crypt, and Loop-aes
We tested three popular open-source disk encryption
 systems, TrueCrypt, dm-crypt, and Loop-AES, and found
that they too are vulnerable to attacks like the ones we have
described. In all three cases, once we had extracted a mem-
ory image with our tools, we were able to use keyfind to
locate the encryption keys, which we then used to decrypt
and mount the disks.

7. counteRmeasuRes
Memory remanence attacks are difficult to prevent because
cryptographic keys in active use must be stored somewhere.
Potential countermeasures focus on discarding or obscur-
ing encryption keys before an adversary might gain physical
access, preventing memory extraction software from execut-
ing on the machine, physically protecting the DRAM chips,
and making the contents of memory decay more readily.

7.1. suspending a system safely
Simply locking the screen of a computer (i.e., keeping the
system running but requiring entry of a password before
the system will interact with the user) does not protect the
contents of memory. Suspending a laptop’s state to RAM
(sleeping) is also ineffective, even if the machine enters a
screen-locked state on awakening, since an adversary could
simply awaken the laptop, power-cycle it, and then extract
its memory state. Suspending to disk (hibernating) may also
be ineffective unless an externally held secret key is required
to decrypt the disk when the system is awakened.

With most disk encryption systems, users can protect
themselves by powering off the machine completely when
it is not in use then guarding the machine for a minute or
so until the contents of memory have decayed sufficiently.
Though effective, this countermeasure is inconvenient, since
the user will have to wait through the lengthy boot process
before accessing the machine again.

Suspending can be made safe by requiring a password or
other external secret to reawaken the machine and encrypt-
ing the contents of memory under a key derived from the
password. If encrypting all of the memory is too expensive,
the system could encrypt only those pages or regions con-
taining important keys. An attacker might still try to guess
the password and check his guesses by attempting decryp-
tion (an offline password-guessing attack), so systems

May 2009 | Vol. 52 | no. 5 | communications of the acm 97

should encourage the use of strong passwords and employ
password strengthening techniques2 to make checking
guesses slower. Some existing systems, such as Loop-AES,
can be configured to suspend safely in this sense, although
this is usually not the default behavior.

7.2. storing keys differently
Our attacks show that using precomputation to speed crypto-
graphic operations can make keys more vulnerable, because
redundancy in the precomputed values helps the attacker
reconstruct keys in the presence of memory errors. To miti-
gate this risk, implementations could avoid storing precom-
puted values, instead recomputing them as needed and
erasing the computed information after use. This improves
resistance to memory remanence attacks but can carry a sig-
nificant performance penalty. (These performance costs are
negligible compared to the access time of a hard disk, but
disk encryption is often implemented on top of disk caches
that are fast enough to make them matter.)

Implementations could transform the key as it is stored in
memory in order to make it more difficult to reconstruct in
the case of errors. This problem has been considered from a
theoretical perspective; Canetti et al.3 define the notion of an
exposure-resilient function (ERF) whose input remains secret
even if all but some small fraction of the output is revealed.
This carries a performance penalty because of the need to
reconstruct the key before using it.

7.3. Physical defenses
It may be possible to physically defend memory chips from
being removed from a machine, or to detect attempts to
open a machine or remove the chips and respond by erasing
memory. In the limit, these countermeasures approach the
methods used in secure coprocessors7 and could add con-
siderable cost to a PC. However, a small amount of memory
soldered to a motherboard would provide moderate defense
for sensitive keys and could be added at relatively low cost.

7.4. architectural changes
Some countermeasures involve changes to the computer’s
architecture that might make future machines more secure.
DRAM systems could be designed to lose their state quickly,
though this might be difficult, given the need to keep the prob-
ability of decay within a DRAM refresh interval vanishingly
small. Key-store hardware could be added—perhaps inside
the CPU—to store a few keys securely while erasing them on
power-up, reset, and shutdown. Some proposed architectures
would routinely encrypt the contents of memory for security
purposes6, 12; these would prevent the attacks we describe as
long as the keys are reliably destroyed on reset or power loss.

7.5. encrypting in the disk controller
Another approach is to perform encryption in the disk con-
troller rather than in software running on the main CPU and
to store the key in the controller’s memory instead of the
PC’s DRAM. In a basic form of this approach, the user sup-
plies a secret to the disk at boot, and the disk controller uses
this secret to derive a symmetric key that it uses to encrypt
and decrypt the disk contents.

For this method to be secure, the disk controller must
erase the key from its memory whenever the computer is
rebooted. Otherwise, an attacker could reboot into a mali-
cious kernel that simply reads the disk contents. For similar
reasons, the key must also be erased if an attacker attempts
to transplant the disk to another computer.

While we leave an in-depth study of encryption in the disk
controller to future work, we did perform a cursory test of two
hard disks with this capability, the Seagate Momentus 5400
FDE.2 and the Hitachi 7K200. We found that they do not appear
to defend against the threat of transplantation. We attached
both disks to a PC and confirmed that every time we powered
on the machine, we had to enter a password via the BIOS in
order to decrypt the disks. However, once we had entered the
password, we could disconnect the disks’ SATA cables from
the motherboard (leaving the power cables connected), con-
nect them to another PC, and read the disks’ contents on the
second PC without having to re-enter the password.

7.6. trusted computing
Though useful against some attacks, most Trusted Computing
hardware deployed in PCs today does not prevent the attacks
described here. Such hardware generally does not perform
bulk data encryption itself; instead, it monitors the boot pro-
cess to decide (or help other machines decide) whether it is
safe to store a key in RAM. If a software module wants to safe-
guard a key, it can arrange that the usable form of that key
will not be stored in RAM unless the boot process has gone as
expected. However, once the key is stored in RAM, it is subject
to our attacks. Today’s Trusted Computing devices can pre-
vent a key from being loaded into memory for use, but they
cannot prevent it from being captured once it is in memory.

In some cases, Trusted Computing makes the problem
worse. BitLocker, in its default “basic mode,” protects the
disk keys solely with Trusted Computing hardware. When
the machine boots, BitLocker automatically loads the keys
into RAM from the Trusted Computing hardware without
requiring the user to enter any secrets. Unlike other disk
encryption systems we studied, this configuration is at risk
even if the computer has been shut down for a long time—
the attacks only needs to power on the machine to have the
keys loaded back into memory, where they are vulnerable to
our attacks.

8. PReVious WoRk
We owe the suggestion that DRAM contents can survive cold
boot to Pettersson,15 who seems to have obtained it from
Chow et al.5 Pettersson suggested that remanence across
cold boot could be used to acquire forensic memory images
and cryptographic keys. Chow et al. discovered the prop-
erty during an unrelated experiment, and they remarked on
its security implications. Neither experimented with those
implications.

MacIver stated in a presentation14 that Microsoft con-
sidered memory remanence in designing its BitLocker disk
encryption system. He acknowledged that BitLocker is vul-
nerable to having keys extracted by cold-booting a machine
when used in a “basic mode,” but he asserted that BitLocker
is not vulnerable in “advanced modes” (where a user must

98 communications of the acm | May 2009 | Vol. 52 | no. 5

research highlights

provide key material to access the volume). MacIver appar-
ently has not published on this subject.

Researchers have known since the 1970s that DRAM cell
contents survive to some extent even at room temperature
and that retention times can be increased by cooling.13 In
2002, Skorobogatov17 found significant retention times with
static RAMs at room temperature. Our results for DRAMs
show even longer retention in some cases.

Some past work focuses on “burn-in” effects that
occur when data is stored in RAM for an extended period.
Gutmann9, 10 attributes burn-in to physical changes in mem-
ory cells, and he suggests that keys be relocated periodically
as a defense. Our findings concern a different phenomenon.
The remanence effects we studied occur even when data is
stored only momentarily, and they result not from physical
changes but from the electrical capacitance of DRAM cells.

A number of methods exist for obtaining memory
images from live systems. Unlike existing techniques, our
attacks do not require access to specialized hardware or a
privileged account on the target system, and they are resis-
tant to operating system countermeasures.

9. concLusion
Contrary to common belief, DRAMs hold their values for
surprisingly long intervals without power or refresh. We
show that this fact enables attackers to extract cryptographic
keys and other sensitive information from memory despite
the operating system’s efforts to secure memory contents.
The attacks we describe are practical—for example, we have
used them to defeat several popular disk encryption sys-
tems. These results imply that disk encryption on laptops,
while beneficial, does not guarantee protection.

In recent work Chan et al.4 demonstrate a dangerous exten-
sion to our attacks. They show how to cold-reboot a running
computer, surgically alter its memory, and then restore the
machine to its previous running state. This allows the attacker
to defeat a wide variety of security mechanisms—including
disk encryption, screen locks, and antivirus software—by tam-
pering with data in memory before reanimating the machine.
This attack can potentially compromise data beyond the local
disk; for example, it can be executed quickly enough to bypass
a locked screen before any active VPN connections time out.
Though it appears that this attack would be technically chal-
lenging to execute, it illustrates that memory’s vulnerabil-
ity to physical attacks presents serious threats that security
researchers are only beginning to understand.

There seems to be no easy remedy for memory rema-
nence attacks. Ultimately, it might become necessary to treat
DRAM as untrusted and to avoid storing sensitive data there,
but this will not be feasible until architectures are changed
to give running software a safe place to keep secrets.

acknowledgments
We thank Andrew Appel, Jesse Burns, Grey David, Laura
Felten, Christian Fromme, Dan Good, Peter Gutmann,
Benjamin Mako Hill, David Hulton, Brie Ilenda, Scott Karlin,
David Molnar, Tim Newsham, Chris Palmer, Audrey Penven,
David Robinson, Kragen Sitaker, N.J.A. Sloane, Gregory
Sutter, Sam Taylor, Ralf-Philipp Weinmann, and Bill Zeller

for their helpful contributions. This work was supported in
part by a National Science Foundation Graduate Research
Fellowship and by the Department of Homeland Security
Scholarship and Fellowship Program; it does not necessarily
reflect the views of NSF or DHS.

References

 1. arbaugh, W., Farber, d., smith, J.
a secure and reliable bootstrap
architecture. In Proceedings of the
IEEE Symposium on Security and
Privacy (May 1997), 65–71.

 2. boyen, X. Halting password
puzzles: Hard-to-break encryption
from human-memorable keys. In
Proceedings of the 16th USENIX
Security Symposium (august 2008).

 3. Canetti, r., dodis, y., Halevi, s.,
Kushilevitz, e., sahai, a. exposure-
resilient functions and all-or-nothing
transforms. In EUROCRYPT 2000,
volume 1807/2000 (2000), 453–469.

 4. Chan, e.M., Carlyle, J.C., david, F.M.,
Farivar, r., Campbell, r.H. bootjacker:
Compromising computers using
forced restarts. In Proceedings of the
15th ACM Conference on Computer
and Communications Security
(october 2008), 555–564.

 5. Chow, J., Pfaff, b., garfinkel, t.,
rosenblum, M. shredding your
garbage: reducing data lifetime
through secure deallocation. In
Proceedings of the 14th USENIX
Security Symposium (august 2005),
331–346.

 6. dwoskin, J., lee, r.b. Hardware-rooted
trust for secure key management and
transient trust. In Proceedings of the
14th ACM Conference on Computer
and Communications Security
(october 2007), 389–400.

 7. dyer, J.g., lindemann, M., Perez, r.,
sailer, r., van doorn, l., smith, s.W.,
Weingart, s. building the IbM 4758
secure coprocessor. Computer 34
(oct. 2001), 57–66.

 8. Ferguson, n. aes-CbC + elephant
diffuser: a disk encryption algorithm
for Windows Vista, (august 2006).

 9. gutmann, P. secure deletion of
data from magnetic and solid-state

memory. In Proceedings of the 6th
USENIX Security Symposium (July
1996), 77–90.

 10. gutmann, P. data remanence
in semiconductor devices. In
Proceedings of the 10th USENIX
Security Symposium (august 2001),
39–54.

 11. Heninger, n., shacham, H. Improved
rsa private key reconstruction for
cold boot attacks. Cryptology ePrint
archive, report 2008/510, december
2008.

 12. lie, d., thekkath, C.a., Mitchell, M.,
lincoln, P., boneh, d., Mitchell, J.,
Horowitz, M. architectural support for
copy and tamper resistant software.
In Symposium on Architectural
Support for Programming Languages
and Operating Systems (2000).

 13. link, W., May, H. eigenschaften von
Mos-ein-transistorspeicherzellen
bei tiefen temperaturen. Archiv für
Elektronik und Übertragungstechnik
33 (June 1979), 229–235.

 14. MacIver, d. Penetration testing
Windows Vista bitlocker drive
encryption. Presentation, Hack In the
box (september 2006).

 15. Pettersson, t. Cryptographic key
recovery from linux memory dumps.
Presentation, Chaos Communication
Camp (august 2007).

 16. shamir, a., van someren, n. Playing
“hide and seek” with stored keys.
LNCS 1648 (1999), 118–124.

 17. skorobogatov, s. low-temperature
data remanence in static raM.
university of Cambridge Computer
laborary technical report 536, June
2002.

 18. Weinmann, r.-P., appelbaum, J.
unlocking FileVault. Presentation,
23rd Chaos Communication
Congress, december 2006.

J. Alex Halderman
(jhalderm@eecs.umich.edu)
university of Michigan.

Seth D. Schoen
(schoen@eff.org)
electronic Frontier Foundation.

Nadia Heninger
(nadiah@cs.princeton.edu)
Princeton university.

William Clarkson
(wclarkso@cs.princeton.edu)
Princeton university.

William Paul
(wpaul@windriver.com)
Wind river systems.

Joseph A. Calandrino
(jcalandr@cs.princeton.edu)
Princeton university.

Ariel J. Feldman
(ajfeldma@cs.princeton.edu)
Princeton university.

Jacob Appelbaum
(jacob@appelbaum.net)
the tor Project.

Edward W. Felten
(felten@cs.princeton.edu)
Princeton university.

© 2009 aCM 0001-0782/09/0500 $5.00

