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abstract
Contrary to widespread assumption, dynamic RAM (DRAM), 
the main memory in most modern computers, retains its 
contents for several seconds after power is lost, even at 
room temperature and even if removed from a mother-
board. Although DRAM becomes less reliable when it is not 
refreshed, it is not immediately erased, and its contents 
persist sufficiently for malicious (or forensic) acquisition of 
usable full-system memory images. We show that this phe-
nomenon limits the ability of an operating system to protect 
cryptographic key material from an attacker with physical 
access to a machine. It poses a particular threat to laptop 
users who rely on disk encryption: we demonstrate that it 
could be used to compromise several popular disk encryp-
tion products without the need for any special devices or 
materials. We experimentally characterize the extent and 
predictability of memory retention and report that rema-
nence times can be increased dramatically with simple 
cooling techniques. We offer new algorithms for finding 
cryptographic keys in memory images and for correcting 
errors caused by bit decay. Though we discuss several strate-
gies for mitigating these risks, we know of no simple remedy 
that would eliminate them.

1. intRoDuction
Most security practitioners have assumed that a computer’s 
memory is erased almost immediately when it loses power, 
or that whatever data remains is difficult to retrieve without 
specialized equipment. We show that these assumptions are 
incorrect. Dynamic RAM (DRAM), the hardware used as the 
main memory of most modern computers, loses its contents 
gradually over a period of seconds, even at normal operat-
ing temperatures and even if the chips are removed from 
the motherboard. This phenomenon is called memory rema-
nence. Data will persist for minutes or even hours if the chips 
are kept at low temperatures, and residual data can be recov-
ered using simple, nondestructive techniques that require 
only momentary physical access to the machine.

We present a suite of attacks that exploit DRAM rema-
nence to recover cryptographic keys held in memory. They 
pose a particular threat to laptop users who rely on disk 
encryption products. An adversary who steals a laptop while 
an encrypted disk is mounted could employ our attacks to 
access the contents, even if the computer is screen-locked or 
suspended when it is stolen.

On-the-fly disk encryption software operates between the 
file system and the storage driver, encrypting disk blocks as 
they are written and decrypting them as they are read. The 

encryption key is typically protected with a password typed 
by the user at login. The key needs to be kept available so 
that programs can access the disk; most implementations 
store it in RAM until the disk is unmounted.

The standard argument for disk encryption’s security 
goes like this: As long as the computer is screen-locked 
when it is stolen, the thief will not be able to access the disk 
through the operating system; if the thief reboots or cuts 
power to bypass the screen lock, memory will be erased and 
the key will be lost, rendering the disk inaccessible. Yet, as 
we show, memory is not always erased when the computer 
loses power. An attacker can exploit this to learn the encryp-
tion key and decrypt the disk. We demonstrate this risk by 
defeating several popular disk encryption systems, includ-
ing BitLocker, TrueCrypt, and FileVault, and we expect many 
similar products are also vulnerable.

Our attacks come in three variants of increasing resis-
tance to countermeasures. The simplest is to reboot the 
machine and launch a custom kernel with a small memory 
footprint that gives the adversary access to the residual 
memory. A more advanced attack is to briefly cut power to the 
machine, then restore power and boot a custom kernel; this 
deprives the operating system of any opportunity to scrub 
memory before shutting down. An even stronger attack is 
to cut the power, transplant the DRAM modules to a second 
PC prepared by the attacker, and use it to extract their state. 
This attack additionally deprives the original BIOS and PC 
hardware of any chance to clear the memory on boot.

If the attacker is forced to cut power to the memory for 
too long, the data will become corrupted. We examine two 
methods for reducing corruption and for correcting errors 
in recovered encryption keys. The first is to cool the memory 
chips prior to cutting power, which dramatically prolongs 
data retention times. The second is to apply algorithms we 
have developed for correcting errors in private and sym-
metric keys. These techniques can be used alone or in 
combination.

While our principal focus is disk encryption, any sensi-
tive data present in memory when an attacker gains physical 
access to the system could be subject to attack. For example, 
we found that Mac OS X leaves the user’s login password in 
memory, where we were able to recover it. SSL-enabled Web 

The full version of this paper was published in Proceed-
ings of the 17th USENIX Security Symposium, August 2008, 
USENIX Association. The full paper, video demonstrations, 
and source code are available at http://citp.princeton.edu/ 
memory/.
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servers are vulnerable, since they normally keep in memory 
private keys needed to establish SSL sessions. DRM systems 
may also face potential compromise; they sometimes rely 
on software to prevent users from accessing keys stored in 
memory, but attacks like the ones we have developed could 
be used to bypass these controls.

It may be difficult to prevent all the attacks that we 
describe even with significant changes to the way encryption 
products are designed and used, but in practice there are a 
number of safeguards that can provide partial resistance. 
We suggest a variety of mitigation strategies ranging from 
methods that average users can employ today to long-term 
software and hardware changes. However, each remedy has 
limitations and trade-offs, and we conclude that there is no 
simple fix for DRAM remanence vulnerabilities.

Certain segments of the computer security and hard-
ware communities have been conscious of DRAM rema-
nence for some time, but strikingly little about it has been 
published. As a result, many who design, deploy, or rely 
on secure systems are unaware of these phenomena or 
the ease with which they can be exploited. To our knowl-
edge, ours is the first comprehensive study of their security 
consequences.

2. chaRacteRiZing Remanence
A DRAM cell is essentially a capacitor that encodes a single 
bit when it is charged or discharged.10 Over time, charge 
leaks out, and eventually the cell will lose its state, or, more 
precisely, it will decay to its ground state, either zero or one 
depending on how the cell is wired. To forestall this decay, 
each cell must be refreshed, meaning that the capacitor must 
be recharged to hold its value—this is what makes DRAM 
“dynamic.” Manufacturers specify a maximum refresh 
interval—the time allowed before a cell is recharged—that 
is typically on the order of a few milliseconds. These times 
are chosen conservatively to ensure extremely high reliabil-
ity for normal computer operations where even infrequent 
bit errors can cause problems, but, in practice, a failure to 
refresh any individual DRAM cell within this time has only a 
tiny probability of actually destroying the cell’s contents.

To characterize DRAM decay, we performed experiments 
on a selection of recent computers, listed in Figure 1. We 
filled representative memory regions with a pseudoran-
dom test pattern, and read back the data after suspending 
refreshes for varying periods of time by cutting power to the 
machine. We measured the error rate for each sample as 

the number of bit errors (the Hamming distance from the 
pattern we had written) divided by the total number of bits. 
Fully decayed memory would have an error rate of approxi-
mately 50%, since half the bits would match by chance.

2.1. Decay at operating temperature
Our first tests measured the decay rate of each machine’s 
memory under normal operating temperature, which 
ranged from 25.5°C to 44.1°C. We found that the decay 
curves from different machines had similar shapes, with 
an initial period of slow decay, followed by an intermediate 
period of rapid decay, and then a final period of slow decay, 
as shown in Figure 2.

The dimensions of the decay curves varied considerably 
between machines, with the fastest exhibiting complete 
data loss in approximately 2.5 s and the slowest taking over 
a minute. Newer machines tended to exhibit a shorter time 
to total decay, possibly because newer chips have higher 
density circuits with smaller cells that hold less charge, but 
even the shortest times were long enough to enable some 
of our attacks. While some attacks will become more dif-
ficult if this trend continues, manufacturers may attempt 
to increase retention times to improve reliability or lower 
power consumption.

We observed that the DRAMs decayed in highly nonuni-
form patterns. While these varied from chip to chip, they 
were very stable across trials. The most prominent pattern is 
a gradual decay to the ground state as charge leaks out of the 
memory cells. In the decay illustrated in Figure 3, blocks of 
cells alternate between a ground state of zero and a ground 
state of one, resulting in the horizontal bars. The fainter 
vertical bands in the figure are due to manufacturing varia-
tions that cause cells in some parts of the chip to leak charge 
slightly faster than those in others.
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figure 2: measuring decay. We measured memory decay after 
 various intervals without power. the memories were running at 
normal operating temperature, without any special cooling. curves 
for machines a and c would be off the scale to the right, with rapid 
decay at around 30 and 15 s, respectively.

figure 1: test systems. We experimented with six systems  (designated 
a–f) that encompass a range of recent DRam  architectures and circuit 
densities.

 Density type system Year

a 128mB SDRam Dell Dimension 4100 1999
B 512mB DDR Toshiba Portégé R100 2001
C 256mB DDR Dell Inspiron 5100 2003
D 512mB DDR2 IBm Thinkpad T43p 2006
E 512mB DDR2 IBm Thinkpad x60 2007
F 512mB DDR2 lenovo 3000 n100 2007
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2.2. Decay at reduced temperature
Colder temperatures are known to increase data retention 
times. We performed another series of tests to measure 
these effects. On machines A–D, we loaded a test pattern 
into memory, and, with the computer running, cooled 
the memory module to approximately −50°C. We then cut 
power to the machine and maintained this temperature 
until power and refresh were restored. As expected, we 
observed significantly slower rates of decay under these 
reduced temperatures (see Figure 4). On all of our test 
systems, the decay was slow enough that an attacker who 
cut power for 1 min would recover at least 99.9% of bits 
correctly.

We were able to obtain even longer retention times by 
cooling the chips with liquid nitrogen. After submerging 
the memory modules from machine A in liquid nitrogen for 
60 min, we measured only 14,000 bit errors within a 1MB 
test region (0.13% decay). This suggests that data might be 
recoverable for hours or days with sufficient cooling.

3. tooLs anD attacks
Extracting residual memory contents requires no special 
equipment. When the system is powered on, the memory 
controller immediately starts refreshing the DRAM, read-
ing and rewriting each bit value. At this point, the values 
are fixed, decay halts, and programs running on the system 
can read any residual data using normal memory-access 
instructions.

One challenge is that booting the system will necessar-
ily overwrite some portions of memory. While we observed 
in our tests that the BIOS typically overwrote only a small 
fraction of memory, loading a full operating system would 
be very destructive. Our solution is to use tiny special-pur-
pose programs that, when booted from either a warm or 
cold reset state, copy the memory contents to some external 

figure 3: Visualizing memory decay. We loaded a bitmap image into memory on test machine a, then cut power for varying intervals.  after 
5 s (left), the image is nearly indistinguishable from the original; it gradually becomes more degraded, as shown after 30, 60 s, and 5 min. 
the chips remained close to room temperature. even after this longest trial, traces of the original remain. the decay shows prominent 
 patterns caused by regions with alternating ground states (horizontal bars) and by physical  variations in the chip (fainter vertical bands).

medium with minimal disruption to the original state.
Most modern PCs support network booting via Intel’s 

Preboot Execution Environment (PXE), which provides rudi-
mentary start-up and network services. We implemented 
a tiny (9KB) standalone application that can be booted 
directly via PXE and extracts the contents of RAM to another 
machine on the network. In a typical attack, a laptop con-
nected to the target machine via an Ethernet crossover cable 
would run a client application for receiving the data. This 
tool takes around 30 s to copy 1GB of RAM.

Some recent computers, including Intel-based Macintosh 
systems, implement the Extensible Firmware Interface 
(EFI) instead of a PC BIOS. We implemented a second mem-
ory extractor as an EFI netboot application. Alternatively, 
most PCs can boot from an external USB device such as a 
USB hard drive or flash device. We created a third imple-
mentation in the form of a 10KB plug-in for the SYSLINUX 

figure 4: colder temperatures slow decay. We measured memory  
errors for machines a–D after intervals without power, first at 
normal operating temperatures (no cooling) and then at a reduced 
temperature of −50°c. Decay occurred much more slowly under the 
colder conditions.

  average Bit errors

 seconds without Power no cooling (%) -50∞c (%)

a 60 41 [no errors]
 300 50 0.000095

B 360 50 [no errors]
 600 50 0.000036

C 120 41 0.00105
 360 42 0.00144

D 40 50 0.025
 80 50 0.18



94    communications of the acm    |   May 2009  |   Vol.  52  |   no.  5

research highlights 

 

bootloader. It can be booted from an external USB device or 
a regular hard disk.

An attacker could use tools like these in a number of ways, 
depending on his level of access to the system and the coun-
termeasures employed by hardware and software. The sim-
plest attack is to reboot the machine and configure the BIOS 
to boot the memory extraction tool. A warm boot, invoked 
with the operating system’s restart procedure, will normally 
ensure that refresh is not interrupted and the memory has 
no chance to decay, though software will have an opportu-
nity to wipe sensitive data. A cold boot, initiated using the 
system’s restart switch or by briefly removing power, may 
result in a small amount of decay, depending on the memory’s 
retention time, but denies software any chance to scrub 
memory before shutting down.

Even if an attacker cannot force a target system to boot 
memory extraction tools, or if the target employs coun-
termeasures that erase memory contents during boot, an 
attacker with sufficient physical access can transfer the 
memory modules to a computer he controls and use it to 
extract their contents. Cooling the memory before power-
ing it off slows the decay sufficiently to allow it to be trans-
planted with minimal data loss. As shown in Figure 5, 
widely available “canned air” dusting spray can be used to 
cool the chips to −50°C and below. At these temperatures 
data can be recovered with low error rates even after several 
minutes.

4. keY ReconstRuction
The attacker’s task is more complicated when the memory 
is partially decayed, since there may be errors in the cryp-
tographic keys he extracts, but we find that attacks can 
remain practical. We have developed algorithms for correct-
ing errors in symmetric and private keys that can efficiently 
reconstruct keys when as few as 27% of the bits are known, 
depending on the type of key.

Our algorithms achieve significantly better performance 
than brute force by considering information other than the 
actual key. Most cryptographic software is optimized by stor-
ing data precomputed from the key, such as a key schedule 
for block ciphers or an extended form of the private key for 
RSA. This data contains much more structure than the key 

itself, and we can use this structure to perform efficient error 
correction.

These results imply a trade-off between efficiency and 
security. All of the disk encryption systems we studied pre-
compute key schedules and keep them in memory for as 
long as the encrypted disk is mounted. While this practice 
saves some computation for each disk access, we find that it 
also facilitates attacks.

Our algorithms make use of the fact that most decay is 
unidirectional. In our experiments, almost all bits decayed 
to a predictable ground state with only a tiny fraction flip-
ping in the opposite direction. In practice, the probability 
of decaying to the ground state approaches 1 as time goes 
on, while the probability of flipping in the opposite direc-
tion remains tiny—less than 0.1% in our tests. We further 
assume that the ground state decay probability is known 
to the attacker; it can be approximated by comparing the 
fractions of zeros and ones in the extracted key data and 
assuming that these were roughly equal before the data 
decayed.

4.1. Reconstructing Des keys
We begin with a relatively simple application of these 
ideas: an error-correction technique for DES keys. Before 
software can encrypt or decrypt data with DES, it must 
expand the secret key K into a set of round keys that are used 
internally by the cipher. The set of round keys is called the 
key schedule; since it takes time to compute, programs typi-
cally cache it in memory as long as K is in use. The DES key 
schedule consists of 16 round keys, each a permutation of 
a 48-bit subset of bits from the original 56-bit key. Every bit 
from the key is repeated in about 14 of the 16 round keys.

We begin with a partially decayed DES key schedule. For 
each bit of the key, we consider the n bits extracted from 
memory that were originally all identical copies of that 
key bit. Since we know roughly the probability that each 
bit decayed 0 → 1 or 1 → 0, we can calculate whether the 
extracted bits were more likely to have resulted from the 
decay of reptitions of 0 or repetitions of 1.

If 5% of the bits in the key schedule have decayed to the 
ground state, the probability that this technique will get any 
of the 56 bits of the key wrong is less than 10−8. Even if 25% of 

figure 5: advanced cold-boot attack. in our most powerful attack, the attacker reduces the temperature of the memory chips while the  
computer is still running, then physically moves them to another  machine configured to read them without overwriting any data. Before  
powering off the computer, the attacker can spray the chips with “canned air,” holding the container in an inverted position so that it  discharges 
cold liquid refrigerant instead of gas (left). this cools the chips to around −50∞c (middle). at this temperature, the data will persist for several 
minutes after power loss with minimal error, even if the memory modules are removed from the computer (right).
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the bits in the key schedule are in error, the probability that 
we can correctly reconstruct the key without resorting to a 
brute force search is more than 98%.

4.2. Reconstructing aes keys
AES is a more modern cipher than DES, and it uses a key 
schedule with a more complex structure, but nevertheless 
we can efficiently reconstruct keys. For 128-bit keys, the AES 
key schedule consists of 11 round keys, each made up of four 
32-bit words. The first round key is equal to the key itself. 
Each subsequent word of the key schedule is generated either 
by XORing two earlier words, or by performing an operation 
called the key schedule core (in which the bytes of a word are 
rotated and each byte is mapped to a new value) on an earlier 
word and XORing the result with another earlier word.

Instead of trying to correct an entire key at once, we can 
examine a smaller set of the bits at a time and then combine 
the results. This separability is enabled by the high amount 
of linearity in the key schedule. Consider a “slice” of the first 
two round keys consisting of byte i from words 1 to 3 of the 
first two round keys, and byte i − 1 from word 4 of the first 
round key (see Figure 6). This slice is 7 bytes long, but it is 
uniquely determined by the 4 bytes from the first round key.

Our algorithm exploits this fact as follows. For each pos-
sible set of 4 key bytes, we generate the relevant 3 bytes of 
the next round key, and we order these possibilities by the 
likelihood that these 7 bytes might have decayed to the corre-
sponding bytes extracted from memory. Now we may recom-
bine four slices into a candidate key, in order of decreasing 
likelihood. For each candidate key, we calculate the key 
schedule. If the likelihood of this key schedule decaying to 
the bytes we extracted from memory is sufficiently high, we 
output the corresponding key.

When the decay is largely unidirectional, this algorithm 
will almost certainly output a unique guess for the key. This 
is because a single flipped bit in the key results in a cascade 
of bit flips through the key schedule, half of which are likely 
to flip in the “wrong” direction.

Our implementation of this algorithm is able to recon-
struct keys with 7% of the bits decayed in a fraction of a sec-
ond. It succeeds within 30 s for about half of keys with 15% 
of bits decayed.

We have extended this idea to 256-bit AES keys and to 
other ciphers. See the full paper for details.

4.3. Reconstructing Rsa private keys
An RSA public key consists of the modulus N and the public 
exponent e, while the private key consists of the private expo-
nent d and several optional values: prime factors p and q of 
N, d mod (p − 1), d mod (q − 1), and q−1 mod p. Given N and e, 
any of the private values is sufficient to efficiently generate 
the others. In practice, RSA implementations store some or 
all of these values to speed computation.

In this case, the structure of the key information is the 
mathematical relationship between the fields of the public 
and private key. It is possible to iteratively enumerate poten-
tial RSA private keys and prune those that do not satisfy 
these relationships. Subsequent to our initial publication, 
Heninger and Shacham11 showed that this leads to an algo-
rithm that is able to recover in seconds an RSA key with all 
optional fields when only 27% of the bits are known.

5. iDentifYing keYs in memoRY
After extracting the memory from a running system, an 
attacker needs some way to locate the cryptographic keys. 
This is like finding a needle in a haystack, since the keys 
might occupy only tens of bytes out of gigabytes of data. 
Simple approaches, such as attempting decryption using 
every block of memory as the key, are intractable if the mem-
ory contains even a small amount of decay.

We have developed fully automatic techniques for locat-
ing encryption keys in memory images, even in the presence 
of errors. We target the key schedule instead of the key itself, 
searching for blocks of memory that satisfy the properties of 
a valid key schedule.

Although previous approaches to key recovery do not 
require a key schedule to be present in memory, they have 
other practical drawbacks that limit their usefulness for our 
purposes. Shamir and van Someren16 conjecture that keys 
have higher entropy than the other contents of memory and 
claim that they should be distinguishable by a simple visual 
test. However, even perfect copies of memory often contain 
large blocks of random-looking data (e.g., compressed files). 
Pettersson15 suggests locating program data structures con-
taining key material based on the range of likely values for 
each field. This approach requires the manual derivation of 
search heuristics for each cryptographic application, and it 
is not robust to memory errors.

We propose the following algorithm for locating sched-
uled AES keys in extracted memory:

Iterate through each byte of memory. Treat that address 1. 
as the start of an AES key schedule.
Calculate the Hamming distance between each word 2. 
in the potential key schedule and the value that would 
have been generated from the surrounding words in a 
real, undecayed key schedule.
If the sum of the Hamming distances is sufficiently 3. 
low, the region is close to a correct key schedule; out-
put the key.

We implemented this algorithm for 128- and 256-bit AES 
keys in an application called keyfind. The program receives 
extracted memory and outputs a list of likely keys. It assumes 

figure 6: error correction for aes keys. in the aes-128 key schedule,  
4 bytes from each round key completely determine 3 bytes of the 
next round key, as shown here. our error correction algorithm 
“slices” the key into four groups of bytes with this property. it  
computes a list of likely candidate values for each slice, then  
checks each combination to see if it is a plausible key.

Round Key 1

Round Key 2

Core
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that key schedules are contiguous regions of memory in the 
byte order used in the AES specification; this can be adjusted 
for particular cipher implementations. A threshold param-
eter controls how many bit errors will be tolerated.

As described in Section 6, we successfully used key-
find to recover keys from closed-source disk encryption 
programs without having to reverse engineer their key data 
structures. In other tests, we even found key schedules that 
were partially overwritten after the memory where they were 
stored was reallocated.

This approach can be applied to many other ciphers, 
including DES. To locate RSA keys, we can search for known 
key data or for characteristics of the standard data structure 
used for storing RSA private keys; we successfully located 
the SSL private keys in memory extracted from a computer 
 running Apache 2.2.3 with mod_ssl. For details, see the full 
version of this paper.

6. attacking encRYPteD Disks
We have applied the tools developed in this paper to defeat 
several popular on-the-fly disk encryption systems, and we 
suspect that many similar products are also vulnerable. Our 
results suggest that disk encryption, while valuable, is not 
necessarily a sufficient defense against physical data theft.

6.1. BitLocker
BitLocker is a disk encryption feature included with some ver-
sions of Windows Vista and Windows 7. It operates as a filter 
driver that resides between the file system and the disk driver, 
encrypting and decrypting individual sectors on demand. 
As described in a paper by Niels Ferguson of Microsoft,8 the 
BitLocker encryption algorithm encrypts data on the disk 
using a pair of AES keys, which, we discovered, reside in RAM 
in scheduled form for as long as the disk is mounted.

We created a fully automated demonstration attack 
tool called BitUnlocker. It consists of an external USB hard 
disk  containing a Linux distribution, a custom SYSLINUX-
based bootloader, and a custom driver that allows BitLocker 
 volumes to be mounted under Linux. To use it against a run-
ning Windows system, one cuts power momentarily to reset 
the machine, then connects the USB disk and boots from the 
external drive. BitUnlocker automatically dumps the memory 
image to the external disk, runs keyfind to locate candidate 
keys, tries all combinations of the candidates, and, if the cor-
rect keys are found, mounts the BitLocker encrypted volume. 
Once the encrypted volume has been mounted, one can browse 
it using the Linux distribution just like any other volume.

We tested this attack on a modern laptop with 2GB of RAM. 
We rebooted it by removing the battery and cutting power 
for less than a second; although we did not use any cooling, 
BitUnlocker successfully recovered the keys with no errors and 
decrypted the disk. The entire automated process took around 
25 min, and optimizations could greatly reduce this time.

6.2. fileVault
Apple’s FileVault disk encryption software ships with recent ver-
sions of Mac OS X. A user-supplied password decrypts a header 
that contains both an AES key used to encrypt stored data and a 
second key used to compute IVs (initialization vectors).18

We used our EFI memory extraction program on an 
Intel-based Macintosh system running Mac OS X 10.4 with 
a FileVault volume mounted. Our keyfind program auto-
matically identified the FileVault AES encryption key, which 
did not contain any bit errors in our tests.

As for the IV key, it is present in RAM while the disk is 
mounted, and if none of its bits decay, an attacker can iden-
tify it by attempting decryption using all appropriately sized 
substrings of memory. FileVault encrypts each disk block in 
CBC (cipher-block chaining) mode, so even if the attacker 
cannot recover the IV key, he can decrypt 4080 bytes of each 
4096 byte disk block (all except the first cipher block) using 
only the AES key. The AES and IV keys together allow full 
decryption of the volume using programs like vilefault.18

6.3. truecrypt, dm-crypt, and Loop-aes
We tested three popular open-source disk encryption 
 systems, TrueCrypt, dm-crypt, and Loop-AES, and found 
that they too are vulnerable to attacks like the ones we have 
described. In all three cases, once we had extracted a mem-
ory image with our tools, we were able to use  keyfind to 
locate the encryption keys, which we then used to decrypt 
and mount the disks.

7. counteRmeasuRes
Memory remanence attacks are difficult to prevent because 
cryptographic keys in active use must be stored somewhere. 
Potential countermeasures focus on discarding or obscur-
ing encryption keys before an adversary might gain physical 
access, preventing memory extraction software from execut-
ing on the machine, physically protecting the DRAM chips, 
and making the contents of memory decay more readily.

7.1. suspending a system safely
Simply locking the screen of a computer (i.e., keeping the 
system running but requiring entry of a password before 
the system will interact with the user) does not protect the 
contents of memory. Suspending a laptop’s state to RAM 
(sleeping) is also ineffective, even if the machine enters a 
screen-locked state on awakening, since an adversary could 
simply awaken the laptop, power-cycle it, and then extract 
its memory state. Suspending to disk (hibernating) may also 
be ineffective unless an externally held secret key is required 
to decrypt the disk when the system is awakened.

With most disk encryption systems, users can protect 
themselves by powering off the machine completely when 
it is not in use then guarding the machine for a minute or 
so until the contents of memory have decayed sufficiently. 
Though effective, this countermeasure is inconvenient, since 
the user will have to wait through the lengthy boot process 
before accessing the machine again.

Suspending can be made safe by requiring a password or 
other external secret to reawaken the machine and encrypt-
ing the contents of memory under a key derived from the 
password. If encrypting all of the memory is too expensive, 
the system could encrypt only those pages or regions con-
taining important keys. An attacker might still try to guess 
the password and check his guesses by attempting decryp-
tion (an offline password-guessing attack), so systems 
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should encourage the use of strong passwords and employ 
password strengthening techniques2 to make checking 
guesses slower. Some existing systems, such as Loop-AES, 
can be configured to suspend safely in this sense, although 
this is usually not the default behavior.

7.2. storing keys differently
Our attacks show that using precomputation to speed crypto-
graphic operations can make keys more vulnerable, because 
redundancy in the precomputed values helps the attacker 
reconstruct keys in the presence of memory errors. To miti-
gate this risk, implementations could avoid storing precom-
puted values, instead recomputing them as needed and 
erasing the computed information after use. This improves 
resistance to memory remanence attacks but can carry a sig-
nificant performance penalty. (These performance costs are 
negligible compared to the access time of a hard disk, but 
disk encryption is often implemented on top of disk caches 
that are fast enough to make them matter.)

Implementations could transform the key as it is stored in 
memory in order to make it more difficult to reconstruct in 
the case of errors. This problem has been considered from a 
theoretical perspective; Canetti et al.3 define the notion of an 
exposure-resilient function (ERF) whose input remains secret 
even if all but some small fraction of the output is revealed. 
This carries a performance penalty because of the need to 
reconstruct the key before using it.

7.3. Physical defenses
It may be possible to physically defend memory chips from 
being removed from a machine, or to detect attempts to 
open a machine or remove the chips and respond by erasing 
memory. In the limit, these countermeasures approach the 
methods used in secure coprocessors7 and could add con-
siderable cost to a PC. However, a small amount of memory 
soldered to a motherboard would provide moderate defense 
for sensitive keys and could be added at relatively low cost.

7.4. architectural changes
Some countermeasures involve changes to the computer’s 
architecture that might make future machines more secure. 
DRAM systems could be designed to lose their state quickly, 
though this might be difficult, given the need to keep the prob-
ability of decay within a DRAM refresh interval vanishingly 
small. Key-store hardware could be added—perhaps inside 
the CPU—to store a few keys securely while erasing them on 
power-up, reset, and shutdown. Some proposed architectures 
would routinely encrypt the contents of memory for security 
purposes6, 12; these would prevent the attacks we describe as 
long as the keys are reliably destroyed on reset or power loss.

7.5. encrypting in the disk controller
Another approach is to perform encryption in the disk con-
troller rather than in software running on the main CPU and 
to store the key in the controller’s memory instead of the 
PC’s DRAM. In a basic form of this approach, the user sup-
plies a secret to the disk at boot, and the disk controller uses 
this secret to derive a symmetric key that it uses to encrypt 
and decrypt the disk contents.

For this method to be secure, the disk controller must 
erase the key from its memory whenever the computer is 
rebooted. Otherwise, an attacker could reboot into a mali-
cious kernel that simply reads the disk contents. For similar 
reasons, the key must also be erased if an attacker attempts 
to transplant the disk to another computer.

While we leave an in-depth study of encryption in the disk 
controller to future work, we did perform a cursory test of two 
hard disks with this capability, the Seagate Momentus 5400 
FDE.2 and the Hitachi 7K200. We found that they do not appear 
to defend against the threat of transplantation. We attached 
both disks to a PC and confirmed that every time we powered 
on the machine, we had to enter a password via the BIOS in 
order to decrypt the disks. However, once we had entered the 
password, we could disconnect the disks’ SATA cables from 
the motherboard (leaving the power cables connected), con-
nect them to another PC, and read the disks’ contents on the 
second PC without having to re-enter the password.

7.6. trusted computing
Though useful against some attacks, most Trusted Computing 
hardware deployed in PCs today does not prevent the attacks 
described here. Such hardware generally does not perform 
bulk data encryption itself; instead, it monitors the boot pro-
cess to decide (or help other machines decide) whether it is 
safe to store a key in RAM. If a software module wants to safe-
guard a key, it can arrange that the usable form of that key 
will not be stored in RAM unless the boot process has gone as 
expected. However, once the key is stored in RAM, it is subject 
to our attacks. Today’s Trusted Computing devices can pre-
vent a key from being loaded into memory for use, but they 
cannot prevent it from being captured once it is in memory.

In some cases, Trusted Computing makes the problem 
worse. BitLocker, in its default “basic mode,” protects the 
disk keys solely with Trusted Computing hardware. When 
the machine boots, BitLocker automatically loads the keys 
into RAM from the Trusted Computing hardware without 
requiring the user to enter any secrets. Unlike other disk 
encryption systems we studied, this configuration is at risk 
even if the computer has been shut down for a long time—
the attacks only needs to power on the machine to have the 
keys loaded back into memory, where they are vulnerable to 
our attacks.

8. PReVious WoRk
We owe the suggestion that DRAM contents can survive cold 
boot to Pettersson,15 who seems to have obtained it from 
Chow et al.5 Pettersson suggested that remanence across 
cold boot could be used to acquire forensic memory images 
and cryptographic keys. Chow et al. discovered the prop-
erty during an unrelated experiment, and they remarked on 
its security implications. Neither experimented with those 
implications.

MacIver stated in a presentation14 that Microsoft con-
sidered memory remanence in designing its BitLocker disk 
encryption system. He acknowledged that BitLocker is vul-
nerable to having keys extracted by cold-booting a machine 
when used in a “basic mode,” but he asserted that BitLocker 
is not vulnerable in “advanced modes” (where a user must 



98    communications of the acm    |   May 2009  |   Vol.  52  |   no.  5

research highlights 

 

provide key material to access the volume). MacIver appar-
ently has not published on this subject.

Researchers have known since the 1970s that DRAM cell 
contents survive to some extent even at room temperature 
and that retention times can be increased by cooling.13 In 
2002, Skorobogatov17 found significant retention times with 
static RAMs at room temperature. Our results for DRAMs 
show even longer retention in some cases.

Some past work focuses on “burn-in” effects that 
occur when data is stored in RAM for an extended period. 
Gutmann9, 10 attributes burn-in to physical changes in mem-
ory cells, and he suggests that keys be relocated periodically 
as a defense. Our findings concern a different phenomenon. 
The remanence effects we studied occur even when data is 
stored only momentarily, and they result not from physical 
changes but from the electrical capacitance of DRAM cells.

A number of methods exist for obtaining memory 
images from live systems. Unlike existing techniques, our 
attacks do not require access to specialized hardware or a 
privileged account on the target system, and they are resis-
tant to operating system countermeasures.

9. concLusion
Contrary to common belief, DRAMs hold their values for 
surprisingly long intervals without power or refresh. We 
show that this fact enables attackers to extract cryptographic 
keys and other sensitive information from memory despite 
the operating system’s efforts to secure memory contents. 
The attacks we describe are practical—for example, we have 
used them to defeat several popular disk encryption sys-
tems. These results imply that disk encryption on laptops, 
while beneficial, does not guarantee protection.

In recent work Chan et al.4 demonstrate a dangerous exten-
sion to our attacks. They show how to cold-reboot a running 
computer, surgically alter its memory, and then restore the 
machine to its previous running state. This allows the attacker 
to defeat a wide variety of security mechanisms—including 
disk encryption, screen locks, and antivirus software—by tam-
pering with data in memory before reanimating the machine. 
This attack can potentially compromise data beyond the local 
disk; for example, it can be executed quickly enough to bypass 
a locked screen before any active VPN connections time out. 
Though it appears that this attack would be technically chal-
lenging to execute, it illustrates that memory’s vulnerabil-
ity to physical attacks presents serious threats that security 
researchers are only beginning to understand.

There seems to be no easy remedy for memory rema-
nence attacks. Ultimately, it might become necessary to treat 
DRAM as untrusted and to avoid storing sensitive data there, 
but this will not be feasible until architectures are changed 
to give running software a safe place to keep secrets.
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