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Abstract

As the number of 3D models available on the Web grows, there is an increasing need for a
search engine to help people find them. Unfortunately, traditional text-based search techniques
are not always effective for 3D data. In this paper, we investigate new shape-based search
methods. The key challenges are to develop query methods simple enough for novice users
and matching algorithms robust enough to work for arbitrary polygonal models. We present a
web-based search engine system that supports queries based on 3D sketches, 2D sketches, 3D
models, and/or text keywords. For the shape-based queries, we have developed a new matching
algorithm that uses spherical harmonics to compute discriminating similarity measures without
requiring repair of model degeneracies or alignment of orientations. It provides 46–245%
better performance than related shape matching methods during precision-recall experiments,
and it is fast enough to return query results from a repository of 20,000 models in under a
second. The net result is a growing interactive index of 3D models available on the Web (i.e.,
a Google for 3D models).

1 Introduction

Over the last few decades, computer science has made incredible progress in computer-aided re-
trieval and analysis of multimedia data. For example, suppose you want to obtain an image of
a horse for a Powerpoint presentation. A decade ago, you could: 1) draw a picture, 2) go to a
library and copy a picture, or 3) go to a farm and photograph a horse. Today, you can simply pick
a suitable image from the millions available on the web. Although web search is commonplace for
text, images, and audio, the information revolution for 3D data is still in its infancy.

However, three recent trends are combining to accelerate the proliferation of 3D models, lead-
ing to a time in the future when 3D models will be as ubiquitous as other multimedia data are today:
(1) new scanners and interactive tools are making construction of detailed 3D models practical and
cost effective, (2) inexpensive graphics hardware is becoming faster (at 3×Moore’s Law), causing
an increasing demand for 3D models from a wide range of people, and (3) the web is facilitating
distribution of 3D models.
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These developments are changing the way we think about 3D data. For years, a primary chal-
lenge in computer graphics has been how to construct interesting 3D models. In the near future,
the key question will shift from “how do we construct them?” to “how do we find them?”. For
example, consider a person who wants to build a 3D virtual world representing a city scene. He
will need 3D models of cars, street lamps, stop signs, etc. Will he buy a 3D modeling tool and
build them himself? Or, will he acquire them from a large repository of 3D models on the Web?
We believe that research in retrieval, matching, recognition, and classification of 3D models will
follow the same trends that can already be observed for text, images, audio, and other media.

An important question then is how people will search for 3D models. Of course, the simplest
approach is to search for keywords in filenames, captions, or context. However, this approach can
fail: (1) when objects are not annotated (e.g., “B19745.wrl”), (2) when objects are annotated with
inspecific or derivative keywords (e.g., “yellow.wrl” or “sarah.wrl”), (3) when all related keywords
are so common that the query result contains a flood of irrelevant matches (e.g., searching for
“faces” – i.e., human not polygonal), (4) when relevant keywords are unknown to the user (e.g.,
objects with misspelled or foreign labels), or (5) when keywords of interest were not known at the
time the object was annotated.

In these cases and others, we hypothesize that shape-based queries will be helpful for finding
3D objects. For instance, shape can combine with function to define classes of objects (e.g., round
coffee tables). Shape can also be used to discriminate between similar objects (e.g., desk chairs
versus lounge chairs). There are even instances where a class is defined entirely by its shape (e.g.,
things that roll). In these instances, “a picture is worth a thousand words.”

Our work investigates methods for automatic shape-based retrieval of 3D models. The chal-
lenges are two-fold. First, we must develop computational representations of 3D shape (shape de-
scriptors) for which indices can be built and similarity queries can be answered efficiently. In this
paper, we describe novel methods for searching 3D databases using orientation invariant spherical
harmonic descriptors. Second, we must find user interfaces with which untrained users can specify
shape-based queries. In this paper, we investigate combinations of 3D sketching, 2D sketching,
text, and interactive refinement based on shape similarity. We have integrated these methods into
a search engine that provides a publicly available index of 3D models on the Web (Figure 1).

The paper is organized as follows. The following section contains a review of related work.
Section 3 provides an overview of our system, while discussion of the main research issues appears
in Sections 4-7, and implementation details are provided in Section 8. Section 9 presents exper-
imental results of studies aimed at evaluating different query and matching methods. Finally, a
brief summary and conclusion appears in Section 10, followed by a discussion of topics for future
work in Section 11.

2 Related Work

Data retrieval and analysis have recently been a very active area of research [30, 52]. The most
obvious examples are text search engines (e.g., Google [22]), which have become part of our daily
lives. However, content-based retrieval and classification systems have also been developed for
other multimedia data types, including audio [34], images [23], and video [94].

Retrieval of data based on shape has been studied in several fields, including computer vision,
computational geometry, mechanical CAD, and molecular biology (see [2, 9, 15, 54, 68, 93] for
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Figure 1: Screenshot of our search engine for 3D models. It allows a user to specify a query using any
combination of keywords and sketches (left). Then, for each query, it returns a ranked set of thumbnail
images representing the 16 best matching 3D models (right). The user may retrieve any of the 3D models
by clicking on its thumbnail, and/or he may refine the search by editing the original input or by clicking on
the “Find Similar Shape” link below any thumbnail.

surveys of recent methods). However, most prior work has focused on 2D data [33, 45, 62]. For
instance, several content-based image retrieval systems allow a user to sketch a coarsely detailed
picture and retrieve similar images based on color, texture, and shape similarities (e.g., [45]). Ex-
tending these systems to work for 3D surface models is non-trivial, as it requires finding a good
user interface for specifying 3D queries and an effective algorithm for indexing 3D shapes. One
problem for indexing 3D surfaces is boundary parameterization. Although the 1D boundary con-
tours of 2D shapes have a natural arc length parameterization, 3D surfaces of arbitrary genus do
not. As a result, common shape descriptors for 2D contours (e.g., [7, 8, 48, 53, 92, 98]) cannot
be extended to 3D surfaces, and computationally efficient matching algorithms based on dynamic
programming (e.g., [87, 90]) cannot be applied to 3D objects. Another problem is the higher di-
mensionality of 3D data, which makes registration, finding feature correspondences, and fitting
model parameters more expensive. As a result, methods that match shapes using geometric hash-
ing [50] or deformations [3, 46, 67, 79, 89]) are more difficult in 3D.

Shape-based recognition of 3D objects is a core problem in computer vision. However, in vi-
sion, images or range scans of objects are usually obtained from specific viewpoints, in scenes
with clutter and occlusion. Range images require partial surface matching [17, 24, 26, 91], and
2D images are further complicated by perspective distortions and lighting variations. Often these
problems are addressed by methods that search for local correspondences between features (e.g.,
[36, 47, 51, 55]), which are expensive and do not readily lead to an indexable representation.
Rather, we focus on 3D models of isolated objects (e.g., a bunny or a teapot) in 3D model files in-
tended for computer graphics visualization or inclusion in a virtual world. While these models are
mostly free of sensor noise and occlusions, they usually contain only unorganized sets of polygons
(“polygon soups”), possibly with missing, wrongly-oriented, intersecting, disjoint, and/or overlap-
ping polygons. The lack of a consistent solid and surface model makes them difficult for shape
analysis. Meanwhile, fixing degenerate models is a difficult open problem [11, 37, 60].

For 3D object models, most shape analysis work has focused on registration, recognition, and
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pairwise matching of surface meshes. For instance, representations for registering and matching
3D surfaces include Extended Gaussian Images [39], Spherical Attribute Images [28, 29], Har-
monic Shape Images [101], Shape Contexts [13, 59], Spin Images [47]. Unfortunately, these pre-
vious methods usually require either a priori registration of objects’ coordinate systems or search
to find pairwise correspondences during matching. Volumetric dissimilarity measures based on
wavelets [35] or Earth Mover’s Distance [75] assume that a topologically valid surface mesh is
available for every object. Other approaches are based on comparing high-level representations
of shape, such as generalized cylinders [19], superquadrics [83], geons [97], shock graphs [81],
medial axes [10], and skeletons [20, 21, 38, 85]. Methods to compute these representations are
usually time-consuming and sensitive to small features. Also, most do not readily lead to a means
for indexing a large database [80].

Finally, shapes have been indexed based on their statistical properties. The simplest approach
represents objects with feature vectors [30] in a multidimensional space where the axes encode
global geometric properties, such as circularity, eccentricity, or algebraic moments [70, 88]. Other
methods have considered histograms of geometric statistics [1, 6, 16, 32, 64]. For instance, Ankerst
et al. [4] proposed shape histograms decomposing shells and sectors around a model’s centroid.
Besl [16] used histograms of the crease angle for all edges in a 3D triangular mesh. Osada et
al. [64] represented shapes with probability distributions of geometric properties computed for
points randomly sampled on an object’s surface. Often these statistical methods are not discrimi-
nating enough to make subtle distinctions between classes of shapes (e.g., living room chairs versus
dining room chairs).

While several projects have been investigating 3D search engines concurrently with ours [66,
86], they are mainly focused on specific data types, such as mechanical CAD parts (e.g., [14, 18,
71, 42]), protein molecules (e.g., [5, 49]), or cultural artifacts [74, 78]. Others only support queries
based on text and file attributes (e.g., [57]). To our knowledge, no previous system has: (1) indexed
a large repository of computer graphics models collected from the Web, (2) supported 2D and 3D
sketching interfaces for shape-based queries, or (3) studied interactions between text and shape in
the search for 3D data. These topics are investigated in this paper.

3 System Overview

The organization of our system is shown in Figure 2. Execution proceeds in four steps: crawling,
indexing, querying, and matching. The first two steps are performed off-line, while the last two
are done for each user query. The following text provides an overview of each step and highlights
its main features:

1. Crawling: We build a database of 3D models by crawling the Web. 3D data still represents
a very small percentage of the Web, and high quality models represent an equally small
percentage of all 3D data. So, we have developed a focused crawler that incorporates a
measure of 3D model “quality” into its page rank. Using this crawler, we have downloaded
17,834 VRML models from the Web. We augment this database with 2,873 commercial
models provided by 3D vendors [44, 25].

2. Indexing: We compute indices to retrieve 3D models efficiently based on text and shape
queries. In particular, we have developed a new 3D shape descriptor based on spherical
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harmonics that is descriptive, concise, efficient to compute, robust to model degeneracies,
and invariant to rotations.

3. Querying: We allow a user to search interactively for 3D models. Our system supports
query methods based on text keywords, 2D sketching, 3D sketching, model matching, and
iterative refinement. We find that methods based on both text and shape combine to produce
better results than either one alone.

4. Matching: For each user query, our web server uses its index to return the sixteen 3D models
that best match the query. Our method answers 3D shape queries in less than a quarter of a
second for our repository; and, in practice, it scales sub-linearly with the number of indexed
models.

Crawler Repository of 
3D Models

World 
Wide 
Web

CrawlerCrawlerCrawler
Indexer

Text
Matcher

3D 
Index

2D 
Index

Text 
Index

2D
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On-line

Off-line

Figure 2: System organization.

The main research issue at the heart of this system is how to provide shape-based query in-
terfaces and matching methods that enable easy and efficient retrieval of 3D models from a large
repository. In the following two sections, we discuss these issues in detail for different query
interfaces.

4 Shape Queries

The most straight-forward shape-based query interface is to provide the search engine with an
existing 3D model and ask it to retrieve similar ones. Our search engine supports this strategy in
two ways.

First, the user may type the name of a file to be uploaded from his computer (e.g., “c:\dolphin.wrl”),
and then the system searches for 3D models with similar shapes. This method is useful for finding
more objects of the same type (e.g., given one chair, find 100 others) or for finding more instances
of a specific 3D object (e.g., checking for illegal copies of a proprietary model).

Second, the user may search for models with shapes like one returned in a previous search by
clicking on the “Find Similar Shape” link under its image on a results page (blue text in Figure 1).
This method is useful for iteratively refining searches to hone in on a specific class of objects.

The main challenge in supporting these 3D shape-based similarity queries is to find a compu-
tational representation of shape (a shape descriptor) for which an index can be built and geometric
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matching can be performed efficiently. Generally speaking, the following properties are desirable
for a shape descriptor. It should be: (1) quick to compute, (2) concise to store, (3) easy to index,
(4) invariant under similarity transforms, (5) insensitive to noise and small extra features, (6) in-
dependent of 3D object representation, tessellation, or genus, (7) robust to arbitrary topological
degeneracies, and (8) discriminating of shape differences at many scales.

Unfortunately, no existing shape descriptor has all these properties. Most high-level shape rep-
resentations, such as generalized cylinders [19], superquadrics [83], geons [97], shock graphs [82],
medial axes [10], and skeletons [20, 38, 85] require a consistent model of the object’s bound-
ary and interior, which is difficult to reconstruct for highly degenerate computer graphics mod-
els [11, 37, 60]. Other shape representations, such as Extended Gaussian Images [39], Spherical
Attribute Images [28, 29], moments [70, 88], and wavelets [35], require a priori registration into
a canonical coordinate system, which is difficult to achieve robustly. Finally, statistical shape de-
scriptors, such as feature vectors [30] and shape distributions [64] are usually not discriminating
enough to distinguish between similar classes of objects.

We propose a novel shape-descriptor based on spherical harmonics. The main idea is to decom-
pose a 3D model into a collection of functions defined on concentric spheres and to use spherical
harmonics to discard orientation information (phase) for each one. This yields a shape descriptor
that is both orientation invariant and descriptive. While the original shape cannot be reconstructed
from this representation, comparison of two descriptors provides a provable lower bound on the
L2 distance between them.

A significant advantage of our approach is that it can be indexed without registration of 3D
models in a canonical coordinate system. While others have used spherical harmonics to obtain
multiresolution representations of shape [77, 95], they require a priori registration with principal
axes. In our experience, we find that principal axes are not good at aligning orientations of different
models within the same class. Figure 3 demonstrates this problem for a collection of mugs. Despite
the fact that the mugs have similar shapes, the derived principal axes are quite different. The
main reason is that contributions to the second-order moments used for rotational alignment scale
quadratically with distance from the center of mass, which causes small differences in the handles
of the mugs to affect the principal axes significantly. The net result is poor alignments and poor
match scores for algorithms that rely upon them. Our method takes advantage of phase elimination
to avoid this problem.

Figure 3: A collection of mugs drawn with their principal axes. Despite the similarity in the models, the
principal axes orient the models in very different ways.
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As compared to other rotation invariant shape signatures, we expect our spherical harmonics
descriptor to be more discriminating of similar shapes. It is unique up to rotations of indepen-
dent frequency components on concentric spheres and characterizes a shape at different resolu-
tions. Other rotationally invariant descriptors discard significantly more information. For example,
Ankerst et al. [4] use a histogram of the distances from each surface point to the object’s center
of mass as a 1D descriptor. This amounts to using the zero’th order spherical harmonic in each
concentric shell. Our method encodes higher frequency information in a 2D descriptor, which
provides more discriminating power.

The main steps for computing a spherical harmonics shape descriptor for a set of polygons are
shown in Figure 4:

1. First, we rasterize the polygonal surfaces into a 2R× 2R× 2R voxel grid, assigning a voxel
a value of 1 if it is within one voxel width of a polygonal surface, and assigning it a value
of 0 otherwise.1 We usually choose R to be ∼32, which provides adequate granularity for
discriminating shapes while filtering out high-frequency noise in the original data.

To normalize for translation and scale, we move the model so that the center of mass lies at
the point (R,R,R), and we scale it so that the average distance from non-zero voxels to the
center of mass is R/2. We use this approach rather than a simpler one based on the center
and radius of the bounding sphere because it is less sensitive to outliers.

2. We treat the voxel grid as a (binary) real-valued function defined on the set of points with
length less than or equal to R and express the function in spherical coordinates:

f(r, θ, φ) = Voxel(r sin(θ) cos(φ) +R, r cos(θ) +R, r sin(θ) sin(φ) +R)

where r ∈ [0, R], θ ∈ [0, π], and φ ∈ [0, 2π]. By restricting to the different radii we obtain a
collection of spherical functions {f0, f1, . . . , fR} with:

fr(θ, φ) = f(r, θ, φ).

3. Using spherical harmonics, we express each function fr as a sum of its different frequencies:

fr(θ, φ) =
∑

m

fmr (θ, φ)

where

fmr (θ, φ) =
m∑

n=−m
amn

√√√√(2m+ 1)
4π

(m− |n|)!
(m+ |n|)!Pmn(cos θ)einφ.

(That is, the function fmr is the projection of the function fr onto the m-th irreducible repre-
sentation of the rotation group acting on the space of spherical functions.)

4. Noting that the different irreducible representations are fixed under rotation, and noting that
rotations do not change the L2 norm of functions, we observe that the value ‖fmr ‖ does not
change if we rotate the function fr. We define a rotation invariant signature for fr as the
collection of scalars {‖f 0

r ‖, ‖f 1
r ‖, . . .}.

1Note: we do not attempt to reconstruct and fill the volumetric interior of the object so as to work with arbitrary
“polygon soups”, a general and commonly found class of computer graphics models. Fixing degenerate models to
form a consistent solid interior and manifold surface is a difficult open problem [11, 37, 60].
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5. Combining these different signatures over the different radii, we obtain a two-dimensional
rotation invariant spherical harmonics descriptor for the 3D model, with the value at index
(r0, m0) corresponding to the length of the m0-th frequency of the restriction of f to the
sphere with radius r0.

Figure 4: Computing our spherical harmonics shape descriptor.

To compare two spherical harmonics descriptors, we simply compute the Euclidean distance
between them. Retrieving the K best matches for a 3D query model is equivalent to solving the
K nearest-neighbors problem in a high-dimensional space. Although this problem is known to
be hard in the worst case, we can build a search algorithm that works efficiently in practice by
searching in multiple 1D spaces [43]. Our implementation works in two passes. In the first pass,
we quickly compute a lower bound for the distance between the query model and all models in
the database by finding the M -nearest neighbors on the projections of the space onto coordinate
axes (M >> K). In the second pass we compute the true distance to the models, sorted by the
lower bound distance. We stop when the distance to the currentK-th nearest model is smaller than
the smallest lower bound of the remaining models. When computing the true distance to a model,
we use the most significant spherical harmonics first, allowing us to stop when the distance to that
model is above our current threshold. In practice, a full comparison is required for a small subset
of the database (experimental results are presented in Section 9).

5 Sketch Queries

Of course, shape similarity queries are only possible when the user already has a representative 3D
model. In some cases, he will be able to find one by using a text search. However, in other cases,
he will have to create it from scratch (at least to seed the search).

An interesting open question then is “what type of modeling tool should be used to create
shapes for 3D retrieval queries?”. This question is quite different than the one asked in traditional
geometric modeling research. Rather than providing a tool with which a trained user can create
models with exquisite detail and/or smoothness properties, our goal is to allow novice users to
specify coarse 3D shapes quickly. In particular, the interface should be easy to learn for first time
visitors to a website. Of course, this requirement rules out almost every 3D modeling tool available
today – i.e., it would not be practical to require everybody who wants to use a 3D search engine to
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take a three week training course to learn the complicated menu structure of a commercial CAD
tool. Instead, we have investigated two alternatives.

The first approach is to specify shape queries with a simple 3D sketching tool, such as Teddy [41]
or Sketch [100]. To investigate this approach, we have developed a query interface in which the
user creates a simple 3D model with Teddy [41], and then the system retrieves similar models using
the matching algorithms described in the previous section (see Figure 5). Unfortunately, our early
experiences suggest that even its simple gesture interface is still too hard for novice and casual
users to learn quickly. During informal studies, we observed that most people do not readily un-
derstand “extrusions” and “cuts,” and they have a difficult time getting used to rotating a 3D model
to get the proper viewpoint for modeling operations. Moreover, only certain types of shapes can
be created with Teddy (blobby objects with topological genus zero). We believe that making 3D
tools even simpler would require further constraints on the types of shapes that could be produced.
Thus, we were motivated to look for alternate sketching paradigms.

Figure 5: 3D sketch query interface.

Our second approach is to draw 2D shapes with a pixel paint program and then have the system
match the resulting image(s) to 2D projections of 3D objects (Figure 6). The main advantage of this
approach is that the interface is easy to learn. All but the most novice computer users have used
a 2D paint program before, and there are no complicated viewing or manipulation commands.
Of course, the main disadvantage is that 2D images generally have less shape information than
3D models. We compensate for this factor somewhat by allowing the user to draw multiple 2D
projections of an object in order to better define its shape.

The main challenge in implementing this approach is to develop algorithms that match 2D
sketches to 3D objects. This problem is significantly different than classical ones in computer vi-
sion because the 2D input is hand-drawn rather than photographic and the interface is interactive.
Thus, we must consider several new questions: How do people draw shapes? What viewpoints do
they select? How should the interface guide or constrain the user’s input? What algorithms are ro-
bust enough to recognize human-drawn sketches? These are big questions, with implications well
beyond the scope of this paper. Unfortunately, the vast literature on how trained artists draw [72],
how people use characteristic views [65], and how computers recognize photographic images [36]
is not directly applicable in our case. Rather, we are interested in how untrained artists make quick
sketches and how a computer can match them to 3D objects.
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Figure 6: 2D sketch query interface.

To investigate these questions, we first ran a pilot study in which 32 students from an introduc-
tory computer science class were instructed to “draw the shape of an <object>” for eight different
objects. The students were only told what to draw, not how to draw it, and they had only 15 seconds
for each object. What we found is that people tend to sketch objects with fragmented boundary
contours and few other lines, they are not very geometrically accurate, and they use a remarkably
consistent set of view directions (see Figure 7). Interestingly, the most frequently chosen views
were not characteristic views [65], but instead ones that were simpler to draw (front, side, and top
views). These results give us clues about how to match sketches to 3D objects in our system.

Figure 7: Sketches by people simply asked to “draw the shape of a” camaro car, cow, dog, human with
arms out, mug, DC10 airplane, and sofa.

For a set of sketches entered by a user, we match them to projected images of 3D models
rendered from different viewpoints and return the best matches (as in [61] and others). During a
preprocessing phase, we render thumbnail images with the boundary contours of each 3D object as
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seen from 13 orthographic view directions. As shown in Figure 8, we take viewpoints at the center
of the three faces, the four top corners, and the middle of six edges of a cube (tilt views).2 Then,
for each query withm sketches, we compute the match score for any 3D object as the minimal sum
of m (out of 13m) pairwise sketch-to-thumbnail dissimilary scores, subject to the constraint that
no thumbnail can be matched to more than one sketch. This sampling ensures that any sketched
view is within 22.5◦ of a sampled view. Moreover, it also takes advantage of the fact that some 3D
models will be aligned with Cartesian axes, in which case our sampled views perfectly match the
views preferred by users. We enhance this effect even further by labeling three sketch windows
“Side View,” “Front View,” and “Top View” in our system.

(a) 3 Side views (b) 4 Corner views

(c) 6 Tilt views

Figure 8: 2D boundary contours rendered from 13 views of each object.

Matching hand drawn sketches to projected silhouettes of 3D models poses another problem.
Although we prompt users with example sketches containing clean boundary contours, user input
is often made up of fragmented sketch marks. Thus, we cannot use efficient contour matching
algorithms (e.g., [7, 8, 92]). Instead, we compare sketches and rendered views with an image
matching method. To handle deformations and geometric inaccuracies, we first apply the distance
transform to both the sketch and rendered image. This helps make our method robust to small
variations in the positions of lines, as in Chamfer matching [12] and Hausdorff matching [40]. It
also provides an indexable distance measure.

For cases where 3D models are arbitrarily oriented, the image matching method must be ro-
bust to reflections and rotations in the image plane. To address this issue, we use a 2D analog
of the spherical harmonics method described in the previous section. Figure 9 demonstrates the
details of our process: (1) Compute the distance transform of the boundary contour. (2) Obtain a
collection of circular functions by restricting to different radii. (3) Expand each circular function
as a sum of trigonometric functions. (4) Using the fact that rotations do not change the amplitude
within a frequency, define the signature of each circular function as a list of the amplitudes of its
constituent trigonometrics. (5) Finally, combine these different signatures to obtain a 2D signa-
ture for the boundary contour. We index these descriptors using the same nearest neighbor search
method described in Section 4. This method is inspired by Zahn and Roskies’ work on Fourier

2Our matching method is invariant to rotations and reflections, so views rotated around the view direction or from
the opposite side of the object are not needed.
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Descriptors [99], which provides a rotation invariant signature for boundary curves, obtained by
computing the Fourier series and storing only the amplitude of each frequency component.

Figure 9: Computing our shape descriptor for boundary contours.

6 Text Queries

Our system also supports searching for 3D models by matching keywords in their textual descrip-
tions. To support this feature, we construct a representative document for each 3D model. The text
in that document includes the model filename, the anchor and nearby text parsed from its referring
Web page, and ASCII labels parsed from inside the model file. For instance, we include part names
(e.g., ”DEF” nodes in VRML), texture file names, and informational fields (e.g., the ”WorldInfo”
node in VRML).3

Each document is preprocessed by removing common words (stop words) that don’t carry much
discriminating information, such as “and”, “or”, “my”, etc. We use the SMART system’s stop list
of 524 common words as well as words specific to our domain (e.g. “jpg”, “www”, “transform”,
etc.) [76]. Next, the text is stemmed (normalized by removing inflectional changes) using the
Porter stemmer [69]. Finally, synonyms of the filename (without the extension) are added using
WordNet [58].

In order to match documents to user-specified keywords or to other documents, we use the
TF-IDF/Rocchio method [73], a popular weighting and classification scheme for text documents.
This method assigns a similarity score based on a term’s frequency in the document and its inverse
frequency over all documents. We use the Bow toolkit [56] in our implementation.

7 Multimodal Queries

Since text and shape queries can provide orthogonal notions of similarity corresponding to function
and form, our search engine allows them to be combined.

We support this feature in two ways. First, text keywords and 2D/3D sketches may be entered
in a single multimodal query. Second, text and shape information entered in successive queries
can be combined so that a user can refine search terms adaptively. For instance, if a user entered

3We found that including comments is counter-productive, as models often contain commented-out geometry,
which floods the documents with indiscriminating keywords.
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text keywords in a first query, and then clicked a “Find Similar Shape” link, the text and 3D shape
would combine to form a second query.

These types of multimodal queries are often helpful to focus a search on a specific subclass of
objects (Figure 10). For example, a query with only keywords can retrieve a class of objects (e.g.,
tables), but it is often hard to hone in on a specific subclass with text alone (e.g., round tables with a
single pedestal). Similarly, a query with only a sketch can retrieve objects with a particular shape,
but it may include objects with different functions (e.g., both tables and chairs). Multimodal input
can combine ways of describing objects to form more specific queries (Figure 10(c)).

(a) Text query (b) 2D sketch query (c) Multimodal query

Figure 10: Multimodal queries are often effective at finding specific types of objects.

In order to find the K top matches for multimodal queries, we find the best M match scores
for each mode separately (M >> K), mean-normalize them (so the mean is 0 and the variance
is 1) to avoid over-weighting any query interface, and then return the K models with the highest
average normalized scores. Currently, we choose K = 16 and M = 128. This method strikes a
balance between returning the intersection of match results returned by different modes (which is
useful for finding specific objects) and returning their union (which is useful for finding all objects
within a class). Later, we plan to allow users to control how search terms are combined (e.g., “OR”
and “AND” qualifiers).

8 Implementation

We have implemented our 3D search engine in C/C++, Java, and Perl. The main components
are shown in Figure 11. All components run under Red Hat Linux 7, except for the web server
(Solaris 8) and the 3D model conversion (Irix 6.5). This section describes the flow of data through
the system and its implementation details.

The crawler is written in Perl, and runs on three 933 MHz Pentium III machines, each with
1 GB memory. Each crawler process is multithreaded and downloads files using up to 50 simulta-
neous connections. It searches for AutoCAD, LightWave, PLY, 3D Studio, VRML, and Wavefront
files, possibly contained within pkzip, gzip, or lharc compressed archives. We initially seed it with
URLs returned by Google and other search engines for queries such as ”3D AND (models OR
meshes)”. Each page retrieved is scored as follows. For 3D models, the score is an estimate of its
“quality” (currently we use the logarithm of the triangle count). For HTML pages, the score is a
count of keywords contained within the title and body text that suggest its relationship to 3D model
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Figure 11: Flow of data through the search engine. The data shown in blue text is stored in the
repository.

files (e.g., “3D model” “Wavefront object” etc.). Each unvisited URL is assigned a priority that is
a weighted sum of: 1) a distance-weighted average of the scores of documents linking to it, 2) a
distance-weighted average of model scores for models nearby in the link graph, and 3) a site score
that reflects the proportion of documents retrieved from the site that are models. We maintain a
hash table of visited URLs to avoid visiting pages more than once.

Every downloaded 3D model goes through several preprocessing steps. We convert first to the
VRML 2 format (generally using PolyTrans [63]) and then to the Ply format in order to simplify
parsing in later steps. Then, we extract text, create thumbnail and 2D contour images, and compute
shape signatures. Once in a while, the recently downloaded models are added to the repository and
all indices are updated. To compute the 3D shape descriptor for a model, we rasterize its polygonal
surfaces into a 64x64x64 voxel grid, which is then decomposed into 32 concentric spheres. We
compute the amplitudes of the first 16 harmonics for each sphere using SpharmonicKit [84]. The
net result is a 16x32 shape descriptor. The shape analysis process takes 1.6 seconds per model with
3500 polygons on average (it is dominated by the time to rasterize polygons into the voxel grid).
To compute the 2D shape descriptor for each thumbnail image, we downsample to 64x64 pixels
and apply the same procedure. The 2D computation takes only 0.4 seconds per image.

For each query, the web server communicates via TCP to a matching server (running on a Dell
Precision 530 PC with two 1.5GHz Pentium III processors and 1 GB of memory). There, a Perl
job control script forks a separate process for each incoming query. Text queries are stemmed and
passed directly to the Bow toolkit classifier rainbow [56]. For 2D sketches and uploaded 3D
model files a shape signature is computed and compared against an in-memory index by a separate
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shape matching process. All match results (model ids, scores, statistics) are returned to the web
server, which constructs a web page with results and returns it to the user. Match results are cached
to enable fast browsing of multiple results pages.

9 Experimental Results

In this section, we report data collected during a series of experiments with our 3D search engine.
The goals of these experiments are: (1) to evaluate how well our shape matching methods work,
(2) to test whether shape can combine with text to provide more effective search tools, and (3) to
characterize the experiences of people using our web site.

9.1 Shape Matching Results

In our first experiment, we aim to test how well our new 3D spherical harmonics matching algo-
rithm finds similar objects. In order to investigate this question in a controlled manner, independent
of user input, we ran a series of experiments in which we matched each model in a database with
all others and analyzed how well the computed ranks correlate with a human’s classification of the
models.

While the purpose of the experiment is mainly to evaluate our matching algorithm, the results
are indicative of how well our search engine works when a user provides his own 3D model and
asks our system to find similar ones, or when a user clicks on the “Find Similar Shape” link under
the image of an object returned by a previous query.

For this experiment, we used a test database with 1890 models of “household” and “miscella-
neous” objects provided by Viewpoint [25]. The models contain between 120 and 120,392 trian-
gles, with a median of 1,536 triangles per object (mean and standard deviation are 3,504 and 6,656,
respectively). Every model came annotated with at least a few descriptive keywords (e.g., “chair,
folding”). Objects were clustered into 85 classes based on functional similarities, largely follow-
ing the groupings provided by Viewpoint. Examples from ten representative classes are shown in
Figure 12. The smallest class had 5 models, the largest had 153 models, and 610 models did not
fit into any meaningful class.

We chose this Viewpoint database because it provides a representative repository of models
with uniform quality and it is difficult for shape-based classification. In particular, several distinct
classes contain objects with very similar shapes. For example, there are five separate classes of
chairs (153 dining room chairs, 10 desk chairs, 5 director’s chairs, 25 living room chairs, and 6
lounge chairs, respectively). Meanwhile, there are objects spanning a wide variety of shapes (e.g.,
8 forks, 5 cannons, 6 hearts, 17 plates of food, etc.). Thus, the database stresses the discrimination
power of our shape matching algorithms while testing them under a variety of conditions.

For the purpose of comparison to related approaches, we implemented five competing shape
matching algorithms:

• Random: this method ranks all models in random order. It provides a baseline for evaluation
of the other methods.
• Moments: this method characterizes the moments of inertia for points (x, y, z) on the sur-

face S of an object (mpqr =
∫
S x

pyqzr dx dy dz). The first two moments (center of mass
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153 diningroom chairs 25 livingroom chairs 8 chests 16 beds 12 dining tables

36 end tables 39 vases 28 bottles 9 chandeliers 5 candelabra

Figure 12: Samples from ten representative classes from the Viewpoint “household” and “miscellaneous”
database (images courtesy of Viewpoint).

and principal axes) were used to register the models in a common coordinate system, and
then the moments up to a sixth order were compared using a component-by-component L2

difference (up to sixth order moments were chosen because they produce the best results for
the test database). Our implementation follows the description in [31].
• Extended Gaussian Images (EGI): this method characterizes a 3D model in terms of its

distribution of surface normal vectors [39]. We aligned the EGI for each model based on its
principal axes, and we compared two aligned EGIs by computing their L2 difference.
• Shape Histograms: this method characterizes the area of intersection with a collection of

concentric spheres. The distribution of areas is normalized so that the overall volume is 1
and two distributions are compared by computing their L2 difference (as in [4]).
• D2 Shape Distributions (D2): this method represents the shape of a 3D model by the dis-

tribution of Euclidean distances between pairs of points on its surface. The distribution for
every model is normalized for scale by dividing by its mean, and two distributions are com-
pared by computing their L1 difference (as in [64]).

Figure 13(a) shows retrieval results obtained with our spherical harmonics shape matching
algorithm as compared to the other methods. Each curve plots precision versus recall averaged
over all classified models in the database. The plot axes can be interpreted as follows. For each
target model in class C and any number K of top matches, “recall” represents the ratio of models
in class C returned within the top K matches, while “Precision” indicates the ratio of the top K
matches that are members of class C. A perfect retrieval result would produce a horizontal line
along the top of the plot, indicating that all the models within the target object’s class are returned
as the top hits. Otherwise, plots that appear shifted up and to the right generally indicate superior
retrieval results.

Note that for every recall value, spherical harmonics (black curve) gives better precision than
the competing methods. On average, the precision values are 46% higher than D2, 60% higher
than Shape Histograms, 126% higher than EGIs, and 245% higher than moments. The reasons are
two-fold. First, matching based on moments and EGIs relies upon principal components to align
models into a canonical coordinate system, and thus those methods tend to do poorly for classes of
objects where the principal axes are not consistent. In contrast, our spherical harmonics descriptor
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Figure 13: Plots of precision versus recall of our spherical harmonics descriptor versus other shape match-
ing methods.

is rotationally invariant, and thus it is less sensitive to such deviations within a class.
Second, the other shape descriptors blend shape information from different parts of an object,

and thus they seem to have trouble discriminating fine details of objects. For instance, one can
view Shape Histograms as an implementation of our spherical harmonics method where only the
zero-th order frequency is used. Our method describes objects up to rotations of multiple inde-
pendent frequency components, and thus it achieves a nice combination of rotational invariance
and discriminating power. As an example, Figure 13(b) shows retrieval results averaged over 25
queries with living room chairs. Although there are hundreds of other types of chairs and sofas in
the database (e.g., 153 dining room chairs), our method is largely able to discriminate the different
types and achieve high precision even in this difficult case.

Our spherical harmonics method also can be indexed effectively. Figure 14 shows the average
time (in seconds) required to find the 16 closest matches in databases of increasing size. Note that
the search time grows sublinearly, and the total search time for a database of 17,500 models is less
than 0.25 seconds.
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Figure 14: Search times (in seconds) for spherical harmonics with/without indexing.
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9.2 Sketch Interface Results

In our second experiment, we investigated how well our system produces matches for queries
entered by humans. Our hypothesis is that shapes are useful in conjunction with text for finding
specific objects. To test this hypothesis, we ran an experiment where we compared the ease of
input and descriptive power of text and 2D sketches provided by untrained users.

The subjects in this experiment were 43 students in an introductory computer science class
(not for computer science majors). Each subject was given a pen and sheet of paper and told that
their task was to write text and draw sketches that could be used by a search engine to retrieve
“target objects” from a database of household objects. After the process was demonstrated once
by the professor, the subjects performed the test for five target objects from the Viewpoint database
(described in the previous section). For each test, the target object was shown rotating around on a
projection screen at the front of a classroom. After fifteen seconds (three rotations), it disappeared,
and the subjects were asked to write up to five text keywords and to draw three 2D sketches from
front, side, and top views that distinguish it from other household objects. They were given two
minutes for each target object, and no feedback was given after each object. After the experiment
was completed, the students were asked to rate text and sketch queries based on “how easy” they
were to construct and “how descriptive” they were for specifying the target objects (Table 1).

Query Interface How Easy How Discriminating
Text Keywords 8.0 6.2

2D Sketches 5.1 6.4

Table 1: Average student ratings of text and 2D sketch query interfaces on a scale from 1 to 10 (10 is best).

Later, we scanned their sketches and logged their keywords so that we could enter them as input
to our search engine (example sketches for a chair and an elf are shown in Figure 15). Table 2 lists
results achieved with queries using: 1) only their text keywords, 2) only their 2D sketches, and 3)
both text keywords and 2D sketches combined in a multimodal query. For each query type, the
table lists the median ranks of the target object and the percentages of the queries where the target
object appeared among the top 16 matches. The latter statistic reflects how often the target would
appear on the first page in our search engine.

Target Median Rank (out of 1890) % in Top 16
Object Only Only Both Only Only Both
Name Text Sketch Combined Text Sketch Combined
Chair 216 17 28 0.0% 46.2% 25.6%
Elf 10 12 2 89.7% 53.8% 97.4%

Table 100 571 252 5.1% 5.1% 10.3%
Cannon 7 40 2 82.1% 33.3% 89.7%
Bunkbed 3 64 2 89.7% 20.5% 89.7%

Table 2: Comparison of retrieval results with queries comprising only text, only 2D sketches, and both
combined.
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Figure 15: Sketches drawn by students to retrieve a specific chair (top three rows) and an elf (bottom three
rows) during an in-class experiment.

The results in Table 2 suggest that text and shape can be complementary in the information
they provide a search engine. For example, for the chair, text keywords were not discriminating
enough to differentiate it from the hundreds of other chairs and related furniture in the database,
and yet very simple sketches were able to describe it fairly precisely. On the other hand, simple
text keywords picked out the five cannons and four bunk beds, while the 2D sketches were not as
discriminating. Generally speaking, the text was effective at identifying classes of objects, while
the sketches were helpful at selecting the best matches from within a class. The net result was that
the combination of sketches and text usually produced a better match than either one alone.

9.3 Interactive Search Results

In our third experiment, we investigated how shape combines with text in interactive searches.
While the results of the previous section suggest shape helps in a single query, a different question
is whether it is still useful when users are allowed to iterate.

To study this question, we created two visually identical test versions of our web site, both
comprising: (1) a box for typing text keywords, (2) buttons for viewing the next and previous
page of match results, and (3) buttons labeled “Find Similar Object” under the thumbnails returned
from previous queries. The only difference between the two web sites was in the way that searches
could be iteratively refined. For one web site, clicking the “Find Similar Object” button retrieved
models with the most similar shapes (as in Section 4). For the other, it retrieved models with the
most similar text documents (as in Section 6). Our sketching interfaces were disabled during these
experiments in order to isolate the effect of shape similarity to a single query modality.

We conducted an on-line experiment with 18 students from another introductory computer
science class. Each student was asked to visit a URL, which was redirected to one of our two
test web sites at random. He was led through a short tutorial that described how to use the search
engine and then presented with the task of finding fifteen target objects (the same five listed in the
previous section plus ten others selected randomly).
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For each search, the target object was shown rotating on the web page for fifteen seconds (three
rotations), after which it disappeared. Then, the student entered text keywords to initiate a search,
and then iterated by either re-entering text, paging down/up, or finding similar objects until the
target object was visible among the 16 matches on the results page.

Statistics logged during the students’ sessions appear in Table 3. Columns 2 and 3 list the
average time (in seconds) and number of iterations required for the student to find each target
object. Column 4 indicates the percentage of students that found the target on the initial query.
The last column indicates the percentage that had found it by the tenth iteration, at which time they
were instructed to give up.

Similarity Search Number of Found on Found after
Measure Time Iterations 1st Query ≤10 Iterations

Text 48 2.8 60% 77%
3D Shape 40 2.4 54% 89%

Table 3: Results of study with different iteration methods.

These results suggest that refining searches based on 3D shape similarity is useful in conjunc-
tion with text for finding specific objects. Using the web site equipped only with text matching,
the students were able to find the target object within ten iterations only 77% of the time. In con-
trast, when the students were able to iterate by finding similar shapes, they found the target object
more often (89% versus 77%), in fewer iterations (2.4 versus 2.8), and in less time (40 sec. versus
48 sec.). Moreover, we conjecture that students using shape-based iteration learned that they still
could find objects quickly if they entered less descriptive keywords in their initial queries (itera-
tion accounted for 35% of the objects found – i.e., 89% - 54%). Although this experiment was
not a controlled study (the students performed the tests over the Internet using any computer on
campus), the results are consistent with our expectation that shape can help discriminate specific
objects more effectively than text alone.

9.4 Search Engine Results

Our 3D search engine has been publicly available on the Web since early November, 2001. It
currently indexes 20,707 models. In this section, we report experiences about how people use the
site.

Table 4 lists statistics gathered during one recent week of usage. During that period, the site
processed 4,522 queries entered from 1,346 unique hosts (not counting local queries) in 55 different
countries, and served 1,029 models to end users. The first row shows the numbers of queries for
each type. After search results have been displayed, a user can (1) request more information about
a downloaded model, (2) go to its referring page, or (3) download the actual model. The remaining
rows in Table 4 shows the percentage of searches for which these events happened at least once.

While it is difficult to make conclusions from these statistics, we observe that people are willing
to make shape-based queries. It will be interesting to see how the usage patterns change as our site
grows.
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Text Sketch Text & Similar Upload
Only Only Sketch Shape Model

Queries 3122 187 332 826 7
Get more info 32 % 29 % 29 % 36 % 14 %
Visit ref page 8 % 7 % 6 % 9 % 0

Download model 14 % 8 % 11 % 18 % 0

Table 4: Statistics gathered from one week’s usage of our on-line search engine.

10 Conclusion

In summary, this paper investigates issues in building a search engine for 3D models. The main
research contributions are: (1) new query interfaces that integrate text, 2D sketches, 3D sketches,
and 3D models, (2) a new shape descriptor based on spherical harmonics that is both discriminating
and robust, and (3) results of experiments suggesting shape is useful in conjunction with text during
search for 3D models. Finally, we provide a large repository of 3D models ... and a way to find the
interesting ones.

11 Future Work

This paper has just scratched the surface of research on shape-based retrieval and analysis for com-
puter graphics. The following are just a few of the many topics that deserve further investigation:

• Better 2D image matching methods: our 2D sketching interface would be more effective
with better image matching algorithms. Sometimes users create query sketches with interior
texture and/or details (e.g., eyes and mouth of a human face), and our search engine matches
them with projected images containing only boundary outlines (e.g., just the outline of the
face). For matching purposes, the interior details in sketches are “interpreted” as boundaries
of holes in projected images, and unexpected results are sometimes returned to the user. Of
course, this problem could be rectified somewhat by providing users with instructions or
examples about how to draw their sketches. However, determining how best to present the
instructions and providing image matching methods that minimize user guidance are topics
for future study.

• New query interfaces: it will be interesting to consider other methods for specifying shape-
based queries. For instance, the following constraint-based description might be used to
retrieve 3D models of a chair: “give me objects consisting of a box-shaped seat with four
equal length and nearly cylindrical legs attached to the bottom side of each corner and a
box-shaped back above the seat with width matching that of the seat, etc.” This approach
captures parameterized classes of objects with a compact description [27, 96].

• New matching and indexing algorithms: follow-up work should consider other types of
shape matching problems. For instance, we currently compare whole objects, but it would
be interesting to match partial objects as well. They could be used to find a car within a city
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scene or to find a Mercedes by looking for its hood ornament. Other matching algorithms
might consider attributes of 3D models, including color, texture, structure, and animations.

• New modeling tools: future 3D modeling systems should consider integrating shape-based
matching and retrieval methods into interactive sketching tools. For instance, consider a 3D
model synthesis paradigm in which a user draws a rough sketch of a desired 3D model and
the system “fills in the details” semi-automatically by suggesting matching detailed parts
retrieved from a large database. In such a paradigm, the user could retain much of the
creative control over model synthesis, while the system performs most of the tedious tasks
required for providing model detail.

• New applications: it would be interesting to see whether the shape-based query and index-
ing methods described in this paper can be used for other applications, such as in mechanical
CAD, medicine, and molecular biology.

In the near future, we expect that shape-based retrieval and analysis of 3D models will become a
very important research area in computer graphics. This paper makes a small step in that direction.
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