
Sketcha: A Captcha Based on Line Drawings of 3D Models

Steven A. Ross
Princeton University
Princeton, NJ, USA

saross@cs.princeton.edu

J. Alex Halderman
University of Michigan
Ann Arbor, MI, USA

jhalderm@eecs.umich.edu

Adam Finkelstein
Princeton University
Princeton, NJ, USA

af@cs.princeton.edu

ABSTRACT
This paper introduces a captcha based on upright orienta-
tion of line drawings rendered from 3D models. The models
are selected from a large database, and images are rendered
from random viewpoints, affording many different drawings
from a single 3D model. The captcha presents the user with
a set of images, and the user must choose an upright orienta-
tion for each image. This task generally requires understand-
ing of the semantic content of the image, which is believed to
be difficult for automatic algorithms. We describe a process
called covert filtering whereby the image database can be
continually refreshed with drawings that are known to have
a high success rate for humans, by inserting randomly into
the captcha new images to be evaluated. Our analysis shows
that covert filtering can ensure that captchas are likely to
be solvable by humans while deterring attackers who wish
to learn a portion of the database. We performed several
user studies that evaluate how effectively people can solve
the captcha. Comparing these results to an attack based on
machine learning, we find that humans possess a substantial
performance advantage over computers.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Authentication; K.4.4
[Computers & Society]: Electronic Commerce—Security

General Terms
Design, Experimentation, Human Factors, Security

Keywords
security, CAPTCHA, 3D models, drawings

1. INTRODUCTION
This paper introduces a captcha [2] called “Sketcha”

based on line drawings created from 3D models. Sketcha
requires the user to rotate each image in a set of drawings
until every one is upright, by clicking to turn them 90-
degrees at a time (Figure 1). The set is selected randomly
from a pool of drawings rendered from 3D models in a
large database. Using randomized viewing parameters,
many different images can be rendered from a single 3D

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

Figure 1: Example captcha based on line drawings.
The user’s goal is to rotate each image until it is up-
right, choosing among four orientations by clicking
on the image. Each line drawing was automatically
rendered from a 3D model using a randomized point
of view, providing for many possible images from
each model.

model. People are better than machines at recognizing and
understanding images of 3D shapes (at least until the general
problem of computer vision is solved). Furthermore, the use
of line drawings preferentially obfuscates the objects, like
the distortions employed in text-based captions, potentially
broadening the relative gap between human recognition and
that of automatic algorithms. Moreover, one study suggests
that people can recognize drawings faster than photographs,
and with equal accuracy, at least in the case of pictures of
human faces [11].

Captchas exploit the gap between what humans and ma-
chines can accomplish; any simple puzzle that humans can
solve well but that is considered to be difficult for comput-
ers may form the basis for a captcha. The most prevalent
captchas are based on an image containing text that has
been obfuscated by a variety of distortions (warping, image
noise, overlapping letters, overdrawn lines and other shapes,
etc.) The designer must choose a degree of obfuscation
which makes it very unlikely that an adversarial program
can deduce the text. At the same time the text should not
be too obfuscated – it should be very likely that the human
should be able to recognize the text. Some people find cur-
rent text-based captchas annoyingly difficult. Luis von Ahn,
one of the inventors of captchas, offers the rule of thumb that
humans will tolerate a test that they can solve about 9 out
of 10 times; if the test is more difficult for humans, frus-
tration will deter them from using the service behind the
captcha [1].

Long-standing problems in AI offer good resources for
captcha designers: we believe an adversary will not be able
to solve the problem with greater accuracy than techniques
previously investigated by the research community [2, 3].
But there remains an arms race between, on one side
captcha designers, and on the other side both researchers
and hackers. Berkeley researchers Mori and Malik [17] were
able to defeat the text-based Gimpy captcha in use by Yahoo
in 2002. Last year security experts announced they believe
that a European hacker has compromised the text-based
captcha in use by Google [18]. As attackers’ methods surpass
the abilities of the least-capable humans, the problem (e.g.
reading obfuscated text) can no longer generate a captcha,
and designers need to turn to new problems.

Our approach follows that of Gossweiler et al. [12], who
introduced the idea of image orientation forming the basis
for a captcha. Their approach, called the “What’s Up”
captcha, uses images drawn from popular web searches as
a potentially huge database. This design enjoys several nice
properties, including simplicity, language independence, and
the web as an ever-growing resource for database images.

Gossweiler et al. mention the possible extension of their
method to use 3D models (the basis for our captcha) which
offer several potential advantages as a source of imagery.
Images selected from the web (the most obvious source for a
huge database) are subject to reverse-indexing, for example
the service offered by TinEye.com.1 In contrast, by provid-
ing renderings (especially line drawings) we offer little sup-
port for an attacker to recover the original 3D model. To
recognize a previously seen model, the attacker must match
any possible rendering (from any angle) against it [9]. More-
over, 3D models have the potential to support a variety of
rendering styles (e.g. Figure 7) to further obfuscate the im-
age, though in this paper we only study simple line drawings.
Models can even be generated programmatically, construct-
ing variety of shapes within a family, like buildings or plants,
based on random parameters, combinations and arrange-
ments. The computer vision literature offers many tools to
the potential attacker of a photo-orientation captcha, for ex-
ample face detection, sky detection, landscape scenes, and so
forth [15, 19]. As observed by Gossweiler et al., the captcha
designer can incorporate such tools into the formation of the
database and thereby ameliorate the threat of such attacks,
and the same principle applies in the 3D case as well. Nev-
ertheless, we believe the gap is broader between what people
and computers can currently achieve with regard to recog-
nizing the contents of line drawings. Finally, serving images
of models, rather than the models themselves, offers an ad-
vantage aside from security, wherever intellectual property
restrictions prevent redistribution of the database.

The other major difference is that the What’s Up captcha
uses continuous rotation (requiring the user’s answer be
within some tolerance of the correct orientation), whereas
Sketcha offers the user only four orientation options. Some
benefits of the latter interface are that it is relatively simpler
to describe and understand, it is easily implemented in
major web browsers, and the task can be accomplished by
only taps or mouse clicks. Chow et al. [5] have argued
for using captchas that can be performed by pointer clicks,
citing speed and simplicity on mobile devices.

1In informal testing, we found that TinEye locates the
correctly-oriented original for at least one of the example
images from the Gossweiler et al. study (Figure 6-6 in [12]).

Researchers have investigated several forms of captchas
based on understanding natural images. Warner proposed a
system called“KittenAuth” based on the ability to recognize
kittens in photographs [22]. Such schemes are known to be
weak because the full database of images can be learned by
an adversary. Thus, the Asirra system of Elson et al. [7]
uses a huge database of photos of cats and dogs (from
Petfinder.com), under the assumption that the full database
is too large to be learned. (In fact, such a method is
often called a HIP for “Human Interactive Proof” rather
than captcha, because the latter technically requires that
all algorithms and data are publicly known.) However,
Golle [10] showed that the Asirra captcha is vulnerable to
machine learning attacks; simply put, it is possible to design
an algorithm that can identify cats and dogs with enough
reliability that the captcha can be solved with probability
0.1, which is sufficiently often to render it ineffective as a
security mechanism.

Previous systems have considered the use of 3D models
in captchas. Kaplan [14] offered an early proposal based
on manual labeling of models that is unlikely to scale due
to manual effort in modeling and labeling parts. The web
site www.yuniti.com uses captchas based on Lambertian
renderings of 3D models, but it does not appear to have
been subjected to a rigorous security analysis and in fact
appears to be susceptible to attack using basic computer
vision techniques. Fu et al. [8] describe a method for
orienting 3D models of man-made objects that might be
used for attacking captchas. Fortunately, our captcha
displays images rendered from models, rather than the
models themselves. Mitra et al. [16] propose highly abstract
“emergence images” rendered from 3D models as a potential
source of captcha, but offer limited security analysis.

Section 2 describes how we built a prototype of the
Sketcha captcha, populating a database with hundreds
of models and thousands of images. This section also
introduces a process we call covert filtering whereby the
database can be continually refreshed. Section 3 presents the
results of several user studies (involving hundreds of subjects
on the Amazon Mechanical Turk) to evaluate people’s
abilities to solve this puzzle, concluding that for a reasonable
range of parameters this is a viable approach. Section 4
considers two broad forms of attack on such a system – both
learning a portion of the database by repeatedly querying
the system and machine learning attacks. We show that our
covert filtering process effectively thwarts an attacker who
seeks to learn the pool of images. Finally, we evaluate our
test database in the context of a machine learning attack
and argue that it would be difficult to close the gap between
humans’ and machines’ ability to solve the captcha.

Thus, the contributions of this paper are:

• a captcha based on orienting drawings derived from 3D
models,

• a working prototype, available at www.sketcha.net

• the results of several large usability studies,

• a way to continually update a database of such images
using “covert filtering,”

• analysis showing that covert filtering resists attackers
who try to learn the database,

• and analysis of a machine learning attack.

2

2. THE SKETCHA CAPTCHA
This section describes our proposed captcha and presents

the details of a prototype implementation. First we address
the user interface, followed with a discussion of how we
produce and maintain a database of 3D models and resulting
images.

2.1 Interface
Our captcha requires the user to rotate a series of images

until each one is upright. In our implementation, each
image is shown as a very small (80x80) thumbnail with
one larger (240x240) image that magnifies any image that
the mouse hovers over, much like in the Asirra captcha of
Elson et al. [7].

Since the images shown are drawings of 3D objects,
the viewer must generally recognize the objects in order
to understand what is their proper orientation (although
sometimes one can make a good guess based on an overall
impression of the kind of object). To rotate an image by 90◦

the user simply clicks on it, so there are four orientations to
choose from. If the series contains n images there are 4n

combinations, for example 65,536 from only eight images. It
takes an average of 1.5 clicks to orient an image, so 12 clicks
are expected for an 8-image captcha.

This interface allows the images to be served by the web
server in a single (random) orientation, and then client-
side javascript rotates the image as the user clicks. (Our
implementation works in several common browsers including
Firefox, Safari and Internet Explorer.) Thus, the bandwidth
requirements are low per captcha, as only one orientation
need be sent per image. In our implementation, ten 240x240
images with an average file size of about 12kb each are sent
from the server per captcha. This is one practical advantage
to choosing 4 discrete possible orientations per image, in
contrast to the captchas described by Gossweiler et al. [12]
which allow for continuous rotation, and thus either requires
more sophisticated software running at the client side (e.g.
Flash) to handle rotation or sending many pre-rotated
images. Finally, we believe that clicking through only
4 choices is easier to understand and manipulate than
continuous rotation.

2.2 Database
To generate images for the captcha, we randomly select

models from a large database of models, using randomly
chosen viewing parameters. The camera angles range from
60◦ above the horizon to 40◦ below the horizon, based on
our empirical observations that it is often difficult to orient
an image when the camera angles are too close to the north
and south poles, and that this effect is stronger from below
than above. In Section 3 we present data that supports these
observations.

After choosing a random camera angle, our process ren-
ders an image using the automatic line drawing system of
Cole et al. [6] which offers control of line density even where
models are very detailed in some areas. Next we crop the
images to the bounding box of the lines, and finally scale
the image to 240x240.

Key to the success of these captchas is that the set of
all possible images, together with their proper answers,
should be difficult or impossible to learn. In one form of
attack sometimes called the “Mechanical Turk attack,” an
adversary pays people a small amount of money (or other

incentives) to collect the proper answers for every image
in the database. To thwart such adversaries we propose
to use three strategies: (1) a large database of models, (2)
a constant feed of new models into the database, and (3)
varying parameters for different images of a given model.
These strategies are discussed below, and an analysis of
the conditions under which they are robust is offered in
Section 4.1.

One challenge posed by both automatic addition of new
models to the database and random selection of views is that
some tasks presented to the user might become too difficult
for many users. It is possible, for example, that the user
would be presented with an image that contains just a few
unrecognizable lines. Our solution to this problem is to show
a new image to a few people and test whether they orient
it consistently, before incorporating it into the database.
The way we test these “evaluation” images is to mix a few
of them in with the already-vetted images presented in a
captcha, randomly, such that a person solving the captcha
is simultaneously demonstrating his humanity and testing
the evaluation images without knowing which is which. We
call this process covert filtering . For example, the user
may see 10 images total, where 8 of the 10 are used as a
captcha and the other 2 images are evaluation images. If
a person correctly solves the captcha based on the 8 vetted
images, then we take the given answers for the 2 evaluation
images as one person’s opinion. Once a certain number of
people have consistently oriented an evaluation image, it is
inserted into the database. On the other hand if anyone
chooses a different orientation it is rejected.

This general approach of using part of a captcha process
to do useful work was pioneered by the reCaptcha system
of von Ahn et al. [20]. However, rather than using the
covert filtering process to achieve an external goal (e.g.,
interpreting digitized text) we use it to improve the strength
of our captcha by growing the database. This framework
is also related to the “collaborative filtering” approach
of Chew and Tygar [4], who use human input to build
captchas based on questions for which there is no “correct”
answer. Taking inspiration from their work, we note that
it is not really important that people fully recognize the
object or even answer correctly, as long as they all agree
about the proper orientation of the images. In practice,
however, we find that with renderings from 3D models,
when people agree about an orientation is almost always
the correct upright orientation. Gossweiler et al. [12] also
briefly discuss this general approach. However, they did not
implement it in their user study, nor did they analyze its
security implications. In Section 3 we perform multiple user
studies to evaluate this framework with regard to human
performance, and in Section 4.1 we analyze the security
impact of this strategy.

There are many potential sources of 3D models, including
commercial data sets containing many thousands of high-
quality models, open source model repositories, and even
simply crawling the web for models. We anticipate that
as 3D scanning technologies improve, acquiring large model
sets will become even easier. The experiments described in
this paper have been based on models downloaded from the
Google 3D Warehouse. This repository allows people from
around the world to upload models for other people to view,
share, download, tag, and discuss, much like Flickr.com does
for photos. It is currently easier to capture photos than

3

to create or capture 3D models, so for the moment image
databases are much larger and growing more quickly than
3D model databases. Nevertheless, the Google Warehouse
contains at least hundreds of thousands of models (Google
does not currently report the size) and appears to be growing
rapidly. This database has a predominance of buildings,
in part because of the ability to geo-locate the model
in connection with Google Earth. In selecting models,
therefore, we only downloaded models that are not geo-
located. In addition, we selected only models with high user
ratings. We downloaded 4488 models, randomly, with these
criteria.

Not all of these models render well in our line drawing
system, for various reasons. For example, objects that are
extremely wide and flat, or long and thin, tend not to
produce good imagery over the range of views described
above, while other models produced mostly-white images for
many views. Therefore we eliminated models with extreme
aspect ratios, where the ratio of the smallest dimension to
the largest dimension was less than 0.1, after which 3851
models survived. Next, our drawing software rendered 20
views of each 3347 models, after which we eliminated models
where the average value v of all pixels in the image was
too close to white (v = 1.0), according to the following
criteria. We rejected models where either: v > 0.99 in 75%
of the images, or v > 0.995 in 25% of the images. Of the
remaining 2574 models, we selected 400 randomly for the
experiments described in Section 3. This entire process was
programmatic and therefore in principle could be carried out
on an larger scale without human intervention.

We observe that after buildings, the next most prevalent
class of models in the 3D Warehouse is cars, or perhaps
vehicles. Knowing that a substantial portion of the images
in the database come from a particular class of object offers
a potential advantage to attackers, who might be able to
construct a specialized detector. (By analogy: automatic
methods for orienting photos often employ face and sky
detectors as these are common in natural images [15, 19].)
While our system only takes the first step, by eliminating
geo-located buildings, we could use filtering, for example, to
limit the number of cars based on the “car” keyword.

3. STUDIES ON HUMAN PERFORMANCE
This section presents the results of three experiments

we performed with the prototype implementation described
in Section 2, in order to evaluate how effectively people
can solve our captcha. We used the Amazon Mechanical
Turk as the source of participants in our studies. The
Mechanical Turk is a internet service that allows“requesters”
(such as researchers) to create small, web-based tasks that
may be performed by anonymous “workers.” Each worker
is typically paid between $0.05 and $0.30 to complete a
task. The number of workers on the service is such that
particularly attractive tasks are usually undertaken within
minutes. Workers on the Mechanical Turk generally seem
to favor tasks that take somewhere around 10 minutes to
complete.

3.1 Experimental Setup
In each of our studies, the task given was to solve a dozen

captchas consecutively, and the data we collected included
the orientation each user selected for each image. The first
ten captchas presented to a subject contained ten images

each, and each of these 100 images were selected randomly
from pool of images used in the study, such that two criteria
were met: first, in any study a subject would see an image
rendered from a particular model no more than once; and
second, progress through the overall pool of images used
throughout the study was approximately uniform. After
the initial ten captchas, two more pages offered an identical
interface to the initial ten pages, but repeated 20 of the
images shown earlier, selected randomly. This provided a
measure of consistency – how many of the repeated images
were answered the same way the second time indicates the
care with which the user performed the task.

In reporting statistics on selected image orientations, we
only considered the initial ten captchas – the final two were
used only to measure consistency so as not to bias the
statistics towards the repeated images.

Prior to beginning the task in every study, subjects were
given a page containing 10 arrows at random orientations
and asked to rotate the arrows so that they all point up,
to ensure they understood the basic interface. On each
subsequent page the instructions read simply: “Click the
images below until they are upright, then click ‘Next’.” Near
the ‘Next’ button, progress was indicated, for example, by
“Page 3 of 12.”

After the 12th page, an optional survey asked subjects for
gender, age by decade, highest educational degree obtained,
and comments. The response rate was high (89%) and these
reported:

• gender: 54% female, 46% male;

• age: 8% < 20, 42% 20–29, 27% 30–39, 13% 40–49,
8% 50–59, 2% 60–69, 0.3% ≥ 70;

• degree: 4% none, 32% high school, 39% undergrad,
21% graduate, 5% doctorate.

We did not find any significant correlation between overall
performance and these attributes, indicating that this task
is equally suited to the different groups. While Mechanical
Turk workers are likely to be more experienced web users
than the general population, there is little reason to expect
that they would be better able to interpret and orient line
drawings. In addition we used Google Analytics to collect
broad demographic information, finding: that our subjects
were from 21 countries in total but about 70% were from the
US, 20% from India, and the remainder largely from Europe;
and that 5 languages were spoken but the vast majority
spoke English. We believe these demographics are roughly
consistent with the overall pool of workers on the Mechanical
Turk. These data are aggregated so we could not compare
performance across demographics.

Overall the 558 participants in our studies completed
1,192 tasks (14,304 pages of which 11,920 were test data and
the others were duplicate images for verifying consistency in
the results). The median time was 8.5 minutes per task.
Some workers completed multiple tasks per study (with the
constraint that they would see a model no more than once)
and some workers completed tasks in multiple studies. We
omitted data from 14 completed tasks where the consistency
rate was below 12/20 and also 7 where the accuracy on
the pool of 100 images was about that of random guessing
(indicative of either a misunderstanding or foul play). These
data were replaced by that of later subjects.

4

0.00 

0.10 

0.20 

0.30 

0.40 

0.50 

0  5  10  15  20  25  30 

(a) Study A: 200 models × 1 image × 30 people

0.00 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0  2  4  6  8  10 

(b) Study B: 400 models × 20 images × 10 people

0.00 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

0  5  10  15  20 

(c) Study C: 200 models × 4 images × 20 people

Figure 2: Distribution of image difficulties in user
studies. Horizontal axis encodes number of people
(out of a:30 b:10 or c:20) who correctly oriented a
particular image – a measure of the difficulty of that
image. Vertical axis shows fraction of the images in
the study with a given difficulty. Distributions in (a)
and (b) are similar, while distribution in (c) includes
only images drawn from the rightmost bar in (b).

3.2 Pilot Study
Our first study (Study A) was a pilot experiment designed

to collect data about the distribution of difficulties of images
in our database. We constructed the database as described
in Section 2.2, and then we selected one image from each of
200 models for this study. We tested them with 54 workers
performing a total of 69 tasks (690 test captchas), such that
every image was seen by at least 30 people.

The fraction of the 30 people who were able to correctly
orient a specific image provides a measure of difficulty or
ease with with which the image can be oriented. Let us call
this measure xi and take it as an approximate measure of
the probability with which an arbitrary new person would
be able to orient the image.

Figure 2a shows a histogram of the distributions of xi
over the 200 images in our pilot study. In this plot f(xi)
is the probability density of xi – the frequency with which
we observe xi, measured with a granularity of 31 bins whose
values sum to 1. Notice that the most frequent case is that
all 30 people oriented the image correctly, and that this case
accounts for 42% of the overall data. This is good news
for our proposed captcha, because it means that there are
many images for which people can consistently orient them
correctly.

The expected value E[x] over this distribution is

E[x] =
∑
i

xif(xi)/
∑
i

f(xi)

Unfortunately, the data Figure 2a have E[x] = 0.78 so
the likelihood of solving a captcha containing 8 images, for
example, is 0.788 = 0.14, in essence an unusable captcha.

These results also suggest that covert filtering might be an
effective approach for selecting images that will make a more
usable captcha. Suppose we show each image in the pool to
10 people, and eject every image that is incorrectly oriented
by at least one person. Of course some moderately difficult
images may survive this filter process, but most will not. We
can estimate the effect of this filter on the distribution, to
the extent that xi models the likelihood that a new person
will be able to correctly orient image i. In particular, the
chance that image i will survive the filter is simply x10i , so
the resulting distribution would be f ′(xi) = x10i f(xi).

Calculating the expected value over this distribution

E[x′] =
∑
i

xif
′(xi)/

∑
i

f ′(xi)

we find that a random image selected from this distribution
has a probability E[x′] = 0.986 of being oriented by a new
person. Thus a captcha containing 8 such images is expected
to be solved with probability 0.89 – a reasonable target rate.
This filter forms the basis of our later experiments.

3.3 Filtering Studies
To form a more usable captcha, we will resort to filter-

ing out difficult images as described in Section 3.2. We per-
formed two studies related to this process. In the first (Study
B), we began with a larger pool of models and collected dis-
tributional statistics as in our pilot study. We used these
statistics to select images that were correctly oriented by
at least ten participants. We then conducted another study
(Study C) using only these filtered images. The results show
that covert filtering can significantly improve the ability of
humans to solve the captcha.

Study B was based on a (40×) larger pool of 400 models
with 20 images each. In this study 504 workers performed
a total of 937 tasks (9,370 test captchas). Each image was
shown to at least 10 people, the number 10 having been
estimated to be sufficient by our analysis of the data from
Study A.

The resulting distribution can be seen in Figure 2b.
Observe that its shape is similar to that of Figure 2a, albeit
with fewer probability values because each image was shown
to 10 people rather than 30 so the bins are broader and taller
on average. The rightmost data point corresponds to the
52% of the 8000 images for which all ten people who saw
the image oriented it correctly. The images from this bin
form the pool for our next study.

5

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Images removed from the database due
to user filtering in Study B. (a-b) recognized but
symmetric, (c-d) difficult to recognize, (e-f) typi-
cally oriented upside down, (g-h) unfamiliar objects
gave rise to incorrect orientations in either (g) bi-
modal or (h) unimodal distributions. Figure 1 shows
example images that survived this filtering process.

In Study C we randomly selected 4 images from each of
200 models, where each image had been correctly oriented
by all 10 participants in Study B. Figure 3 show a selection
of these filtered images. The test images were shown as a
series of captchas, just as in the previous experiments, in this
case so that each image was seen by at least 20 people. In
this study 98 workers performed a total of 186 tasks (1,860
test captchas).

The resulting probability distribution is shown in Fig-
ure 2c. The expected value is E[x] = 0.983, which matches
well the value of E[x′] = 0.986 predicted from the data
in our prior study as described in Section 3.2. Moreover,
E[x]8 = 0.87 which suggests that this distribution for suc-
cessful rates of image orientation could be used as the basis
for a reasonable captcha.

In addition, we can return to the data for the specific
pages of images shown to users and ask: suppose 8 of the 10
images had in fact been a captcha – would the person have
succeeded? We find that averaged over all people, all pages,
and all subsets of 8 images on each page, that the success
rate would be 0.88. This number is slightly better than the
rate based solely on the image distribution, because in some
cases the user simply pressed the “Next” button without
orienting any of the images, which depresses the success rate
for images at a higher-than-average rate while only incurring
the penalty of a single failed page.

3.4 Discussion
We draw two significant conclusions from these studies.

First, the fully-automatic process that randomly selects
views and models drawn from the Google 3D Warehouse
and renders line drawings from them generates imagery that
people can often orient correctly, but not often enough to
be used in the kind of captcha proposed herein. Second, the
filtering process that rejects images that were incorrectly
oriented by at least 1 out of 10 people removes enough of
the difficult imagery that the resulting pool can be used for
a captcha.

Recall from Section 1 the rule of thumb that people
will tolerate a captcha that they can solve 9 out of 10

0.5 

0.6 

0.7 

0.8 

0.9 

1 

‐40  ‐30  ‐20  ‐10  0  10  20  30  40  50 

Accuracy vs. Angle above Horizon 

-30◦: 70% -10◦: 90% 25◦: 100% 45◦: 90%

Figure 4: Accuracy by angle above the horizon.
People tend to be most accurate when the camera
angle is about 20◦ above the horizon. Views below
the horizon (negative angles) have lower accuracy
than those above (positive). Label d matches the
histogram bin containing values in [d,d+ 5] degrees.
Images labeled with approximate angle:accuracy.

times they try. Our observed success rate of 0.88 is in the
ballpark. Moreover, we have several reasons to believe that
in practice the sketcha captcha could have a significantly
higher success rate. First, the incentives in our studies
do not quite match the incentives of a true captcha. Our
workers tended to proceed through a series of captcha pages
with two competing goals: to get most of the images right
(which they are paid to do) and to finish quickly (so they
can move onto their next job and make more money). With
the proposed captcha, the person’s goal is to orient all of
the images correctly; if they fail they have to try again until
they succeed. Therefore, we believe that people would be a
little more careful in the real setting. (One could imagine
trying to design an incentive structure for the studies on
the Mechanical Turk that more closely matched that of a
captcha, for example declining to pay people who failed,
but we felt this would be unfair.)

In a production captcha system, we would also identify
and eject images that survived the initial covert filtering
process, but turned out later to have a higher-than-average
failure rate, thereby further improving average performance
over time. Furthermore, we believe the overall quality of the
initial database, prior to covert filtering, could be improved
in several ways. For example, by using more sophisticated
heuristics that look for difficult models such as those that
have strong symmetries such as the wheel shown in Figure 3.
Finally, by more narrowly restricting the camera views used
in production, we see an opportunity to further improve the
initial database. Figure 4 shows the accuracy for the images
shown in Study B as a function of the camera angle over
the horizon. We see that by restricting the range of angles
to the range [−10◦, 50◦], we could substantially improve the
quality of the images in the initial pool.

6

Finally, we note that the median times to complete the 12
pages in Study C (6.5 mins) was significantly lower than that
of Study B (8.8 mins). This is not surprising, since many
of the difficult images had been removed. These numbers
indicate that a person could typically solve a 10-image
sketcha captcha in about 35 seconds. Moreover, it might
actually be faster as the recorded numbers probably include
times in which some workers took breaks. Nevertheless, one
limitation of this technique is that this time is probably
longer than the time to solve a typical text-based captcha.

4. SECURITY ANALYSIS
In this section we consider possible classes of attack and

how they compromise this form of captcha. First we discuss
the attacker who concentrates on learning a fraction of the
database of images simply by guessing randomly, without
regard for the actual image content. The attacker may either
assail the system with many guesses in rapid succession to
learn some of the database, or may begin by stealing a
fraction of the database. Under this form of attack, the
system is compromised as the attacker learns enough of the
images in the database so as to significantly increase the
probability of solving future captchas. Next we investigate
an alternate approach wherein the attacker does not bother
to remember previously seen images, but rather concentrates
on using the content of known images to train a machine
learning algorithm for selecting the correct answer for new,
previously unseen images. Under this second attack, the
system is compromised as the attacker’s algorithm increases
the chance of correctly solving the captcha significantly
above that of random guessing. Finally, we consider an
attacker that uses both of these attacks in tandem.

4.1 Database attacks
Here we discuss the conditions under which an attacker

compromises the captcha by learning part of the image
database via guessing. As the attacker learns more of the
database, his chance of guessing the answer to a captcha
improve, because he is likely to recognize some of the images.
However, we will show that in order to maintain knowledge
of any fraction of the database over time, the attacker must
sustain a substantial portion of the overall traffic to the
database. The dilemma for the attacker is that as he learns
more of the database, making it easier for him to guess the
captcha, it becomes harder for him to learn new images in
order to maintain his rate of knowledge.

Suppose the attacker’s rate of traffic represents a frac-
tion α of the overall traffic C to the captcha, and that
the remaining fraction (1 − α) comes from legitimate users.
(Any other non-legitimate traffic, say from other attackers,
may be assigned to α for the purposes of this discussion.)
The legitimate traffic causes new images to be added to the
database at some rate `h due to covert filtering. If the at-
tacker knows a fraction d of the database, he must learn new
images at a rate d`h in order to keep up.

The covert filtering process described in Section 2.2 adds
images to the database at the rate:

`h = (1 − α)Cmq/t (1)

where m is the number of images being evaluated in each
captcha through covert filtering (2 in our examples), q is
the fraction of our pool of evaluation images that survives
the covert filtering process (0.52 in Study B) and t is the

expected number of times an image must be shown in the
covert filtering process before it is either rejected (because
someone failed to orient it properly) or it is added to the
database. For example, in Study B, images were shown
10 times, but the “mean time to failure” for those images
lowered t to 7.3.

Next we consider how quickly the attacker can learn new
images by guessing. We observe that if the attacker guesses
the answer to a captcha and it is rejected, he learns relatively
little – only the fact that at least one of the test images was
not correct. On the other hand, if his answer is accepted,
then he knows that every test image was correct. Suppose
that out of n images he already knew the answer for k of
them, and he correctly guessed the other n−k. In that case
he learned n − k new images. (We can ignore the fact that
the attacker does not know which n of the m+ n images in
the captcha are already in the database and which m are
being evaluated; he can simply treat them all as “correct.”)

Since the attacker knows fraction d of the database, the
probability of his knowing exactly k of the n images in the
captcha is given by:

pnk =

(
n

k

)
dk(1 − d)n−k

Moreover, the probability of his guessing all of the n − k
unknown images is gn−k where g is the chance of guessing
one (1

4
in our interface), and in that case he learns n − k

images. Thus, for each attempted captcha he can expect on
average to learn:

`1 =

n∑
k=0

gn−k(n− k)pnk

Recall that the attacker is attempting captchas at rate αC,
and that this must allow him to learn at least as fast as d`h,
so:

`a = αC`1 ≥ d`h (2)

Equation (1) and inequality (2) place a lower bound on
the fraction α of the traffic to the captcha necessary for the
attacker to sustain in order to continue knowing a fraction
d of the database. Collecting terms it is easy to show that:

α ≥ 1/
(

1 +
t

mq

n∑
k=0

gn−k(n− k)

(
n

k

)
dk−1(1 − d)n−k

)
(3)

While inequality (3) is messy, it is easy to evaluate in specific
cases, as with the parameters for Sketcha summarized after
Equation (1). Figure 5 shows a plot of α as a function of d.
If the attacker starts from no knowledge of the database and
is trying to learn a fraction of it, he has to climb over the
hump from the left side by sustaining a tremendous surge of
traffic (95% at the peak). If that is not possible, the attacker
remains to the left of the peak and his knowledge of the
database offers him only marginal advantage over random
guessing.

On the other hand suppose the attacker was somehow able
to steal the entire database. In this case he has to climb the
curve on the right side in order to maintain his knowledge
of the database (because as new images are added to the
database, he sees them only rarely and thus it is difficult for
him to learn at the same rate). So an attacker who obtains
the entire database must fall down the curve from the right

7

0

0.2

0.4

0.6

0.8

1

0.00001 0.0001 0.001 0.01 0.1 1

A
"
ac
ke
r'
s
tr
affi

c
(f
ra
c/
on

 o
f a

ll
tr
affi

c)

Frac/on of database known by the a"acker

Figure 5: Database Attack. This plot places a lower
bound on the fraction of the traffic to the captcha
that must come from the attacker (α, vertical axis)
as a function of how much the database is already
known to the attacker (d, horizontal axis), in the
steady state. If the attacker’s traffic drops below
this bound, the database will grow faster than his
learning rate, due to covert filtering. Starting from
no knowledge of the database (left side) the attacker
must exert 95% of the traffic to the database to
climb over the hump. Even if the attacker has
managed to learn as much as 80% of the database
(right valley), he must sustain 47% of the overall
traffic in order to maintain this knowledge.

until his level of traffic can sustain the steady state. If that
level is below the minimum of the curve (47% in Figure 5)
then he will not be able to learn quickly enough to maintain
any fraction of the database and over time his knowledge
will dwindle. In this sense the process emerging from covert
filtering can be thought of as giving the database a “self-
healing” property.

We can also analyze the What’s Up captcha of Goss-
weiler et al. [12] using the same machinery. Their paper
suggests that using three images (n = 3) provides a reason-
able tradeoff between security from attacks and difficulty
for humans. Suppose we add a fourth image for evaluation
(m = 1), and that it takes on average the same number of
trials to determine whether or not to add it to the database
as in our examples (t = 7.3). Their paper suggests that
roughly half of the images survive this evaluation process
(q = 0.5). With these parameters we produce a plot similar
in shape to that Figure 5, but with a lower peak (65%) and
shallower valley. Thus we conclude that the covert filtering
process should also resist database attacks for the What’s Up
captcha. However, it appears that the scenario in Sketcha
where there are more components, each solved more easily,
offers better resistance to this form of attack.

Finally, we note that for small values of C, the bound
in equation (3) may not be prohibitive for an attacker,
which has security implications for web sites wishing to use
captchas with covert filtering. If a web site that generates
a small amount of traffic maintains its own database of
images, an attacker may be able to sustain a high rate of
traffic relative to legitimate users. Therefore, covert filtering
is effective in contexts where the captcha is implemented
centrally and serving many users – in this way sites with
low traffic can find“safety in numbers”by sharing a common
database.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Examples from machine learning attack.
We trained a SVM on half of the images in Study B
and then evaluated it on the remainder. Objects
in the upper row were oriented correctly while the
lower row failed. The SVM generally classified boxy
objects better than organic forms, and tended to
do better for near-horizon views like (c) than off-
angle views like (g). Many successes and failures
are difficult to explain, such as (d) and (h).

4.2 Machine learning attacks
In addition to explicitly learning the contents of the image

database, an attacker may use a machine learning algorithm
to build a general-purpose classifier for images of the type
used in the captcha. Automatic image orientation detection
is a well-studied topic when the subject is a color photograph
(e.g., [15, 19]). Current generation algorithms report high
(>90%) accuracy in selecting the correct orientation for a
general photograph among four 90◦ rotations. However,
we believe that our images are robust against current
machine learning methods since line drawings contain less
information that photographs. In particular, line drawings
lack color, texture, background objects and scenery, as well
as high-level semantic cues like grass, sky, buildings, faces,
and the like.

Luo and Boutell [15] describe an algorithm for orienting
photographs that performs well and is fairly representative
of current methods. Their algorithm uses a host of classifiers
that leverage the aforementioned image properties like color
distribution and semantic features. However, only one of
their classifiers makes sense to apply to line drawings: the
support vector machine (SVM) based on edge detection
histograms, for which they used the technique of Wang
and Zhang [21]. Therefore, we implemented the same
SVM, which creates feature vectors based on spatial edge
detection histograms. Such a histogram is calculated for
each block that results from dividing the image into a 5x5
grid, then classifying all pixels according to their edge angle
as calculated by the canny edge detection algorithm. For
line drawings, we note that a canny edge detector will turn
each line into two lines, one in a direction that is rotated
180◦ from the other. In this way all angles can be expressed
in the range 0-180 instead of 0-360, knowing that edge pixels
come in pairs. Therefore, our histograms have 19 bins, of
which the first 18 are used for edge pixels and the last one
is used for pixels that do not correspond to an edge.

To test the strength of our image database against an
attack that uses the algorithm described above, we created

8

sets of feature vectors for each the 800 images used in
Study C. Each image produced four sets of feature vectors
labeled for each of the four possible orientations. In this way,
the SVM correctly classifies an image if it labels according
to its proper orientation. We split the data into halves, and
trained a multi-class SVM on each independently. One half
trained the SVM and we tested it on the other half; then
we swapped the halves and repeated the test. The SVM
classified images with 61% accuracy on average. Figure 6
shows examples for which it performed well or failed.

These results show that a machine learning algorithm can
do significantly better than random guessing. However, an
accuracy level of 61% still gives an attacker little hope of
breaking the captcha. An attacker using an algorithm with
such accuracy would correctly classify eight images in only
1.9% of cases.

There are several defenses against a machine learning
algorithm that has high accuracy. One could resort to filter
out images that can be solved by particular machine learning
algorithms, as proposed by Gossweiler et al.. Pre-filtering
images this way would have little impact on the accuracy of
humans in completing the task, for several reasons. First,
one would need to remove relatively few images to skew the
statistics of the classifier towards randomness, so doing this
could have little effect on high success rate of humans found
in Section 3.3. Second, in looking at the performance of the
SVM on this data set we see little correlation with the human
performance. The use of rendered line drawings also affords
us the ability to vary the rendering process to create images
that are targeted at defeating machine learning attacks.
The rendering process leaves room for extensive stylization
and obfuscation of the object that could confuse a machine
learning algorithm based on edge distribution, but can be
made in such a way as to preserve the semantic meaning of
the image for a human observer.

Finally, we consider the case where an attacker combines
the database and machine learning attacks discussed in
Sections 4.1 and 4.2. The analysis leading to equation (3)
supposes that an attacker who does not know an image in
the database guesses it with probability equal to random
guessing (1

4
). However, if the attacker uses machine learning

to gain advantage in this guess, one might worry that he
would be able to learn the database with a much lower
traffic rate than emerged from the analysis in Section 4.1. In
this situation, the hump on the left of the plot in Figure 5
is attenuated, and therefore the attacker can climb it on
the left, but will need to sustain a level equal to about
10% of the legitimate traffic in order to keep up with the
growing database. Obviously this attacker does better than
one without the aid of machine learning, but in many
contexts this remains a prohibitive barrier for all but the
most resourceful attackers.

5. CONCLUSION AND FUTURE WORK
This paper presents the Sketcha captcha, a task which

requires users to determine the upright orientation for a
selection of 3D objects rendered as line drawings. By
leveraging a large database of common objects, we render
a collection of images from various angles to use in the task.
We apply covert filtering to ensure that the images used in
the captcha can be solved by humans with high accuracy. In
addition, a production implementation would actively add
new images to the database to thwart attackers.

Figure 7: Stylization. In addition to varying view-
points, a single 3D model can be rendered with a
broad range of stylization using methods such as
that of Kalnins et al. [13].

We believe that line drawings of 3D models are a source
of images that is stronger against machine learning attacks
than previously suggested image-based captchas. Compared
to photographs, line drawings lack detail and cues such as
color, leaving less information for computers, but our studies
show that this does not make them prohibitively difficult for
users to orient.

We ran three user studies to test our captcha and filtering
approaches. The results show that we can use covert filtering
to increase the human rate of success sufficiently for the task
to serve as a practical captcha.

We tested the viability of machine learning attacks by im-
plementing a support vector machine. It was able to orient
our test images with modest accuracy, but its performance
was insufficient to break the captcha. Machine learning tech-
niques may improve in the future, but our system can adapt
by pre-filtering the database to remove images that are suc-
cessfully oriented by such methods or by changing the image
rendering process until the performance of the orientation
algorithms drop.

This project suggests a number of areas for future work,
including:

• Obfuscations available for 3D. In this paper we
rendered models only with a simple line drawing style.
However, there are many styles available, even within
the realm of line drawings (Figure 7). We would like
to explore a range of techniques available for further
obfuscating the images, hopefully thwarting machine
learning algorithms without adversely affecting human
performance. For example, we could use wiggly lines
rather than straight ones, or we could randomly add
lines to the image that are uncorrelated with the rest
of the drawing.

• Other tasks. In this paper we used rotation as
the goal, but there are many other tasks that could
be given, based on semantic understanding of the
drawing. For example, we could ask people to match
images drawn from the same model but with different
rendering parameters.

• Deployment. Our user studies have been quite
extensive, but performed in an artificial setting where
users were paid to solve a task. We would like to study
this captcha in the context of a working web site where
visitors have the actual captcha experience.

9

Acknowledgments
We would like to thank Brian Brewington, Rich Feit, Mark
Limber, and the Google 3D Warehouse for the models used
in this paper as well as helpful guidance in the project. We
are grateful for the encouragement and advice of Luis von
Ahn. We also thank Forrester Cole for support in adapting
his “dpix” automatic line drawing software, and Mark Gray
for an early prototype based on photos. This work was
sponsored in part by a Google Research Award.

6. REFERENCES
[1] Luis von Ahn. Personal communication, 2008.

[2] Luis von Ahn, Manuel Blum, and John Langford.
Captcha: Using hard AI problems for security. In
Proceedings of Eurocrypt, pages 294–311.
Springer-Verlag, 2003.

[3] Luis von Ahn, Manuel Blum, and John Langford.
Telling humans and computers apart automatically.
Communications of the ACM, 47(2):56–60, 2004.

[4] Monica Chew and J. D. Tygar. Collaborative filtering
captchas. In Henry S. Baird and Daniel P. Lopresti,
editors, HIP, volume 3517 of Lecture Notes in
Computer Science, pages 66–81. Springer, 2005.

[5] Richard Chow, Philippe Golle, Markus Jakobsson,
Lusha Wang, and XiaoFeng Wang. Making captchas
clickable. In HotMobile ’08: Proceedings of the 9th
workshop on Mobile computing systems and
applications, pages 91–94, 2008.

[6] Forrester Cole, Doug DeCarlo, Adam Finkelstein,
Kenrick Kin, Keith Morley, and Anthony Santella.
Directing gaze in 3D models with stylized focus.
Eurographics Symposium on Rendering, pages
377–387, June 2006.

[7] J. Elson, J. Douceur, J. Howell, and J. Saul. Asirra: a
Captcha that exploits interest-aligned manual image
categorization. In Proceedings of ACM CCS 2007,
pages 366–374, 2007.

[8] Hongbo Fu, Daniel Cohen-Or, Gideon Dror, and Alla
Sheffer. Upright orientation of man-made objects.
ACM Trans. Graph., 27(3), 2008.

[9] Thomas Funkhouser, Patrick Min, Michael Kazhdan,
Joyce Chen, J. Alex Halderman, David Dobkin, and
David Jacobs. A search engine for 3D models. ACM
Trans. Graph., 22(1):83–105, 2003.

[10] Philippe Golle. Machine learning attacks against the
Asirra captcha. Technical Report 2008/126, IACR
Cryptology ePrint Archive, 2008.

[11] Bruce Gooch, Erik Reinhard, and Amy Gooch. Human
facial illustrations: Creation and psychophysical
evaluation. ACM Trans. Graph., 23(1):27–44, 2004.

[12] Rich Gossweiler, Maryam Kamvar, and Shumeet
Baluja. What’s up captcha? A captcha based on
image orientation. In Proceedings of WWW 2009, the
18th International World Wide Web Conference, 2009.

[13] Robert D. Kalnins, Lee Markosian, Barbara J. Meier,
Michael A. Kowalski, Joseph C. Lee, Philip L.
Davidson, Matthew Webb, John F. Hughes, and
Adam Finkelstein. WYSIWYG NPR: drawing strokes
directly on 3D models. ACM Transactions on
Graphics, 21(3):755–762, July 2002.

[14] Michael Kaplan. The 3-D Captcha.
http://spamfizzle.com/CAPTCHA.aspx.

[15] Jiebo Luo and Matthew Boutell. Automatic image
orientation detection via confidence-based integration
of low-level and semantic cues. IEEE Trans. Pattern
Anal. Mach. Intell., 27(5):715–726, 2005.

[16] Niloy J. Mitra, Hung-Kuo Chu, Tong-Yee Lee, Lior
Wolf, Hezy Yeshurun, and Daniel Cohen-Or. Emerging
images. ACM Transactions on Graphics, 28(5), 2009.

[17] Greg Mori and Jitendra Malik. Recognizing objects in
adversarial clutter: Breaking a visual captcha. In
Computer Vision and Pattern Recognition CVPR03,
pages 134–141, 2003.

[18] Brad Stone. Breaking Google captchas for some extra
cash. New York Times, March 13, 2008.

[19] Aditya Vailaya, Hongjiang Zhang, Senior Member,
Changjiang Yang, Feng-I Liu, and Anil K. Jain.
Automatic image orientation detection. IEEE
Transactions on Image Processing, 11:600–604, 2002.

[20] Luis von Ahn, Benjamin Maurer, Colin McMillen,
David Abraham, and Manuel Blum. reCAPTCHA:
Human-Based Character Recognition via Web Security
Measures. Science, 321(5895):1465–1468, 2008.

[21] Yongmei Wang and Hongjiang Zhang. Content-based
image orientation detection with support vector
machines. IEEE Workshop on Content-Based Access
of Image and Video Libraries (CBAIVL 2001), pages
17–23, 2001.

[22] Oli Warner. KittenAuth.
http://www.thepcspy.com/kittenauth.

10

