Measuring small subgroup attacks against Diffie-Hellman

Luke Valenta*, David Adrian†, Antonio Sanso‡, Shaanan Cohney*, Joshua Fried*, Marcella Hastings*, J. Alex Halderman‡, Nadia Heninger*

*University of Pennsylvania †University of Michigan ‡Adobe

Abstract—Several recent standards, including NIST SP 800-56A and RFC 5114, advocate the use of “DSA” parameters for Diffie-Hellman key exchange. While it is possible to use such parameters securely, additional validation checks are necessary to prevent well-known and potentially devastating attacks. In this paper, we observe that many Diffie-Hellman implementations do not properly validate key exchange inputs. Combined with other protocol properties and implementation choices, this can radically decrease security. We measure the prevalence of these parameter choices in the wild for HTTPS, POP3S, SMTP with STARTTLS, SSH, IKEv1, and IKEv2, finding millions of hosts using DSA and other non-“safe” primes for Diffie-Hellman key exchange, many of them in combination with potentially vulnerable behaviors. We examine over 20 open-source cryptographic libraries and applications and observe that until January 2016, not a single one validated subgroup orders by default. We found feasible full or partial key recovery vulnerabilities in OpenSSL, the Exim mail server, the Unbound DNS client, and Amazon’s load balancer, as well as susceptibility to weaker attacks in many other applications.

I. INTRODUCTION

Diffie-Hellman key exchange is one of the most common public-key cryptographic methods in use in the Internet. It is a fundamental building block for IPsec, SSH, and TLS. In the textbook presentation of finite field Diffie-Hellman, Alice and Bob agree on a large prime \(p \) and an integer \(g \) modulo \(p \). Alice chooses a secret integer \(x_a \) and transmits a public value \(g^{x_a} \mod p \); Bob chooses a secret integer \(x_b \) and transmits his public value \(g^{x_b} \mod p \). Both Alice and Bob can reconstruct a shared secret \(g^{x_a x_b} \mod p \), but the best known way for a passive eavesdropper to reconstruct this secret is to compute the discrete log of either Alice or Bob’s public value. Specifically, given \(g, p \), and \(g^x \mod p \), an attacker must calculate \(x \).

In order for the discrete log problem to be hard, Diffie-Hellman parameters must be chosen carefully. A typical recommendation is that \(p \) should be a “safe” prime, that is, that \(p = 2q + 1 \) for some prime \(q \), and that \(g \) should generate the group of order \(q \) modulo \(p \). For \(p \) that are not safe, the group order \(q \) can be much smaller than \(p \). For security, \(q \) must still be large enough to thwart known attacks, which for prime \(q \) run in time \(O(\sqrt{q}) \). A common parameter choice is to use a 160-bit \(q \) with a 1024-bit \(p \) or a 224-bit \(q \) with a 2048-bit \(p \), to match the security level under different cryptanalytic attacks. Diffie-Hellman parameters with \(p \) and \(q \) of these sizes were suggested for use and standardized in DSA signatures [50]. For brevity, we will refer to these non-safe primes as DSA primes, and to groups using DSA primes with smaller values of \(q \) as DSA groups.

A downside of using DSA primes instead of safe primes for Diffie-Hellman is that implementations must perform additional validation checks to ensure the key exchange values they receive from the other party are contained in the correct subgroup modulo \(p \). The validation consists of performing an extra exponentiation step. If implementations fail to validate, a 1997 attack of Lim and Lee [54] can allow an attacker to recover a static exponent by repeatedly sending key exchange values that are in very small subgroups. We describe several variants of small subgroup confinement attacks that allow an attacker with access to authentication secrets to mount a much more efficient man-in-the-middle attack against clients and servers that do not validate group orders. Despite the risks posed by these well-known attacks on DSA groups, NIST SP 800-56A, “Recommendations for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography” [23] specifically recommends DSA group parameters for Diffie-Hellman, rather than recommending using safe primes. RFC 5114 [53] includes several DSA groups for use in IETF standards.

We observe that few Diffie-Hellman implementations actually validate subgroup orders, in spite of the fact that small subgroup attacks and countermeasures are well-known and specified in every standard suggesting the use of DSA groups for Diffie-Hellman, and DSA groups are commonly implemented and supported in popular protocols. For some protocols, including TLS and SSH, that enable the server to unilaterally specify the group used for key exchange, this validation step is not possible for clients to perform with DSA primes — there is no way for the server to communicate to the client the intended order of the group. Many standards involving DSA groups further suggest that the order of the subgroup should be matched to the length of the private exponent. Using shorter private exponents yields faster exponentiation times, and is a commonly implemented optimization. However, these standards provide no security justification for decreasing the size of the subgroup to match the size of the exponents, rather than using as large a subgroup as possible. We discuss possible motivations for these recommendations later in the paper.
We conclude that adopting the Diffie-Hellman group recommendations from RFC 5114 and NIST SP 800-56A may create vulnerabilities for organizations using existing cryptographic implementations, as many libraries allow user-configurable groups but have unsafe default behaviors. This highlights the need to consider developer usability and implementation fragility when designing or updating cryptographic standards.

Our Contributions. We study the implementation landscape of Diffie-Hellman from several perspectives and measure the security impact of the widespread failure of implementations to follow best security practices:

- We summarize the concrete impact of small-subgroup confinement attacks and small subgroup key recovery attacks on TLS, IKE, and SSH handshakes.
- We examined the code of a wide variety of cryptographic libraries to understand their implementation choices. We find feasible full private exponent recovery vulnerabilities in OpenSSL and the Unbound DNS resolver, and a partial private exponent recovery vulnerability for the parameters used by the Amazon Elastic Load Balancer. We observe that no implementation that we examined validated group order for subgroups of order larger than two by default prior to January 2016, leaving users potentially vulnerable to small subgroup confinement attacks.
- We performed Internet-wide scans of HTTPS, POP3S, SMTP with STARTTLS, SSH, IKEv1, and IKEv2, to provide a snapshot of the deployment of DSA groups and other non-“safe” primes for Diffie-Hellman, quantify the incidence of repeated public exponents in the wild, and quantify the lack of validation checks even for safe primes.
- We performed a best-effort attempt to factor \(p - 1 \) for all non-safe primes that we found in the wild, using \(\sim 100,000 \) core-hours of computation. Group 23 from RFC 5114, a 2048-bit prime, is particularly vulnerable to small subgroup key recovery attacks; for TLS a full key recovery requires \(2^{33} \) online work and \(2^{47} \) offline work to recover a 224-bit exponent.

Disclosure and Mitigations. We reported the small subgroup key recovery vulnerability to OpenSSL in January 2016 [66]. OpenSSL issued a patch to add additional validation checks and generate single-use private exponents by default [11]. We reported the Amazon load balancer vulnerability in November 2015. Amazon responded to our report informing us that they have removed Diffie-Hellman from their recommended ELB security policy, and have reached out to their customers to recommend that they use these latest policies. Based on scans performed in February and May 2016, 88% of the affected hosts appear to have corrected their exponent generation behavior. We found several libraries that had vulnerable combinations of behaviours, including Unbound DNS, GnuTLS, LibTomCrypt, and Exim. We disclosed to the developers of these libraries. Unbound issued a patch, GnuTLS acknowledged the report but did not patch, and LibTomCrypt did not respond. Exim responded to our bug report stating that they would use their own generated Diffie-Hellman groups by default, without specifying subgroup order for validation [10], [12]. We found products from Cisco, Microsoft, and VMware lacking validation that key exchange values were in the range \((1, p - 1) \). We informed these companies, and discuss their responses in Section III-D.

II. Background

A. Groups, orders, and generators

The two types of groups used for Diffie-Hellman key exchange in practice are multiplicative groups over finite fields ("\(\text{mod} \ p \)") and elliptic curve groups. We focus on the "\(\text{mod} \ p \)" case, so a group is typically specified by a prime \(p \) and a generator \(g \), which generates a multiplicative subgroup modulo \(p \). Optionally, the group order \(q \) can be specified; this is the smallest positive integer \(q \) satisfying \(g^q \equiv 1 \pmod{p} \). Equivalently, it is the number of distinct elements of the subgroup \(\{ g, g^2, g^3, \ldots \pmod{p} \} \).

By Lagrange’s theorem, the order \(q \) of the subgroup generated by \(g \) modulo \(p \) must be a divisor of \(p - 1 \). Since \(p \) is prime, \(p - 1 \) will be even, and there will always be a subgroup of order 2 generated by the element \(-1\). For the other factors \(q_i \) of \(p - 1 \), there are subgroups of order \(q_i \pmod{p} \). One can find a generator \(g_i \) of a subgroup of order \(q_i \) using a randomized algorithm: try random integers \(h \) until \(h^{(p-1)/q_i} \neq 1 \pmod{p} \); \(g_i = h^{(p-1)/q_i} \pmod{p} \) is a generator of the subgroup. A random \(h \) will satisfy this property with probability \(1 - 1/q_i \).

In theory, neither \(p \) nor \(q \) is required to be prime. Diffie-Hellman key exchange is possible with a composite modulus and with a composite group order. In such cases, the order of the full multiplicative group modulo \(p \) is \(\phi(p) \) where \(\phi \) is Euler’s totient function, and the order of the subgroup generated by \(g \) must divide \(\phi(p) \). Outside of implementation mistakes, Diffie-Hellman in practice is done modulo prime \(p \).

B. Diffie-Hellman Key Exchange

Diffie-Hellman key exchange allows two parties to agree on a shared secret in the presence of an eavesdropper [29]. Alice and Bob begin by agreeing on shared parameters (prime \(p \), generator \(g \), and optionally group order \(q \)) for an algebraic group. Depending on the protocol, the group may be requested by the initiator (as in IKE), unilaterally chosen by the responder (as in TLS), or fixed by the protocol itself (SSH originally built in support for a single group).

Having agreed on a group, Alice chooses a secret \(x_a < q \) and sends Bob \(y_a = g^{x_a} \pmod{p} \). Likewise, Bob chooses a secret \(x_b < q \) and sends Alice \(y_b = g^{x_b} \pmod{p} \). Each participant then computes the shared secret key \(g^{x_a x_b} \pmod{p} \).

Depending on the implementation, the public values \(y_a \) and \(y_b \) might be ephemeral—freshly generated for each connection—or static and reused for many connections.

C. Discrete log algorithms

The best known attack against Diffie-Hellman is for the eavesdropper to compute the the private exponent \(x \) by calculating the discrete log of one of Alice or Bob’s public value \(y \). With knowledge of the exponent, the attacker can trivially compute the shared secret. It is not known in general whether the hardness of computing the shared secret from the public values is equivalent to the hardness of discrete log.

The computational Diffie-Hellman assumption states that computing the shared secret \(g^{x_a x_b} \) from \(g^x \) and \(g^y \) is hard for some choice of groups. A stronger assumption, the decisional Diffie-Hellman problem, states that given \(g^x \) and \(g^y \), the shared secret \(g^{x a x_b} \) is computationally indistinguishable from random for some groups. This assumption is often not true for groups used in practice; even with safe primes as defined below, many implementations use a generator that generates
the full group of order \(p - 1 \), rather than the subgroup of order \((p - 1)/2\). This means that a passive attacker can always learn the value of the secret exponent modulo 2. To avoid leaking this bit of information about the exponent, both sides could agree to compute the secret shared secret as \(y^{2x} \mod p \) if we have not seen implementations with this behavior.

There are several families of discrete log algorithms, each of which apply to special types of groups and parameter choices. Implementations must take care to avoid choices vulnerable to any particular algorithm. These include:

Small-order groups. The Pollard rho [63] and Shanks’ baby step–giant step algorithms [67] each can be used to compute discrete logs in groups of order \(q \) in time \(O(\sqrt{q}) \). To avoid being vulnerable, implementations must choose a group order with bit length at least twice the desired bit security of the key exchange. In practice, this means that group orders \(q \) should be at least 160 bits for an 80-bit security level.

Composite-order groups. If the group order \(q \) is a composite with prime factorization \(q = \prod_i q_i \), then the attacker can use the Pohlig-Hellman algorithm [61] to compute a discrete log in time \(O(\sum_i e_i \sqrt{q_i}) \). The Pohlig-Hellman algorithm computes the discrete log in each subgroup of order \(q_i \) and then uses the Chinese remainder theorem to reconstruct the log modulo \(q \). Adrian et al. [18] found several thousand TLS hosts using primes with composite-order groups, and were able to compute discrete logs for several hundred Diffie-Hellman key exchanges using this algorithm. To avoid being vulnerable, implementations should choose \(q \) so that it generates a subgroup of large prime order modulo \(p \).

Short exponents. If the secret exponent \(x_o \) is relatively small or lies within a known range of values of a relatively small size, \(m \), then the Pollard lambda “kangaroo” algorithm [64] can be used to find \(x_o \) in time \(O(\sqrt{m}) \). To avoid this attack, implementations should choose secret exponents to have bit length at least twice the desired security level. For example, using a 256-bit exponent for a 128-bit security level.

Small prime moduli. When the subgroup order is not small or composite, and the prime modulus \(p \) is relatively large, the fastest known algorithm is the number field sieve [40], which runs in subexponential time in the bit length of \(p \), \(\exp((1.923 + o(1))(\log p)^{1/3}(\log \log p)^{2/3}) \). Adrian et al. recently applied the number field sieve to attack 512-bit primes in about 90,000 core-hours [18], and they argue that attacking 1024-bit primes—which are widely used in practice—is within the resources of large governments. To avoid this attack, current recommendations call for \(p \) to be at least 2048 bits [21]. When selecting parameters, implementers should ensure all attacks take at least as long as the number field sieve for their parameter set.

D. Diffie-Hellman group characteristics

“Safe” primes. In order to maximize the size of the subgroup used for Diffie-Hellman, one can choose a \(p \) such that \(p = 2q + 1 \) for some prime \(q \). Such a \(p \) is called a “safe” prime, and \(q \) is a Sophie Germain prime. For sufficiently large safe primes, the best attack will be solving the discrete log using the number field sieve. Many standards explicitly specify the use of safe primes for Diffie-Hellman in practice. The Oakley protocol [59] specified five “well-known” groups for Diffie-Hellman in 1998. These included three safe primes of size 768, 1024, and 1536 bits, and was later expanded to include six more groups in 2003 [51]. The Oakley groups have been built into numerous other standards, including IKE [43] and SSH [71].

DSA groups. The DSA signature algorithm [50] is also based on the hardness of discrete log. DSA parameters have a subgroup order \(q \) of much smaller size than \(p \). In this case \(p = q + 1 \) where \(q \) is prime and \(r \) is a large composite, and \(g \) generates a group of order \(q \). FIPS 186-4 [50] specifies 160-bit \(q \) for 1024-bit \(p \) and 224- or 256-bit \(q \) for 2048-bit \(p \). The small size of the subgroup allows the signature to be much shorter than the size of \(p \).

E. DSA Group Standardization

DSA-style parameters have also been recommended for use for Diffie-Hellman key exchange. NIST Special Publication 800-56A, “Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography” [23], first published in 2007, specifies that finite field Diffie-Hellman should be done over a prime-order subgroup \(q \) of size 160 bits for a 1024-bit prime \(p \), and a 224- or 256-bit subgroup for a 2048-bit prime. While the order of the multiplicative subgroups is in line with the hardness of computing discrete logs in these subgroups, no explanation is given for recommending a subgroup of precisely this size rather than setting a minimum subgroup size or using a safe prime. Using a shorter exponent will make modular exponentiation more efficient, but the order of the subgroup \(q \) does not increase efficiency—on the contrary, the additional modular exponentiation required to validate that a received key exchange message is contained in the correct subgroup will render key exchange with DSA primes less efficient than using a “safe” prime for the same exponent length. Choosing a small subgroup order is not known to have much impact on other cryptanalytic attacks, although the number field sieve is somewhat (not asymptotically) easier as the linear algebra step is performed modulo the subgroup order \(q \).

RFC 5114, “Additional Diffie-Hellman Groups for Use with IETF Standards” [53], specifies three DSA groups with the above orders “for use in IKE, TLS, SSH, etc.” These groups were taken from test data published by NIST [1]. They have been widely implemented in IPsec and TLS, as we will show below. We refer to these groups as Group 22 (1024-bit group with 160-bit subgroup), Group 23 (2048-bit group with 224-bit subgroup), and Group 24 (2048-bit group with 256-bit subgroup) throughout the remainder of the paper to be consistent with the group numbers assigned for IKE.

RFC 6989, “Additional Diffie-Hellman Tests for the Internet Key Exchange Protocol Version 2 (IKEv2)” [68], notes that “mod \(p \)” groups with small subgroups can be vulnerable to small subgroup attacks, and mandates that IKE implementations should validate that the received value is in the correct subgroup or never repeat exponents.

F. Small subgroup attacks

Since the security of Diffie-Hellman relies crucially on the group parameters, implementations can be vulnerable to an attacker who provides maliciously generated parameters that change the properties of the group. With the right parameters and implementation decisions, an attacker may be able to efficiently determine the Diffie-Hellman shared secret. In some cases, a passive attacker may be able to break a transcript offline.
Small subgroup confinement attacks. In a small subgroup confinement attack, an attacker (either a man-in-the-middle or a malicious client or server) provides a key-exchange value y that lies in a subgroup of small order. This forces the other party’s view of the shared secret, y^x, to lie in the subgroup generated by the attacker. This type of attack was described by van Oorschot and Wiener [69] and ascribed to Vanstone and Anderson and Vaudenay [20]. Small subgroup confinement attacks are possible even when the server does not repeat exponents—the only requirement is that an implementation does not validate that received Diffie-Hellman key exchange values are in the correct subgroup.

When working $\mod p$, there is always a subgroup of order 2, since $p-1$ is even. A malicious client Mallory could initiate a Diffie-Hellman key exchange value with Alice and send her the value $y_M = p - 1 \equiv -1 \mod p$, which is is a generator of the group of order 2 mod p. When Alice attempts to compute her view of the shared secret as $k_a = y_M^a \mod p$, there are only two possible values, 1 and $-1 \mod p$.

The same type of attack works if $p-1$ has other small factors q_i. Mallory can send a generator g_i of a group of order q_i, as her Diffie-Hellman key exchange value. Alice’s view of the shared secret will be an element of the subgroup of order q_i. Mallory then has a $1/q_i$ chance of blindly guessing Alice’s shared secret in this invalid group. Given a message from Alice encrypted using Alice’s view of the shared secret, Mallory can brute force Alice’s shared secret in q_i guesses.

More recently, Bhargavan and Delignat-Lavaud [25] describe “key synchronization” attacks against IKEv2 where a man-in-the-middle connects to both the initiator and responder in different connections, uses a small subgroup confinement attack against both, and observes that there is a $1/q_i$ probability of the shared secrets being the same in both connections. Bhargavan and Leurent [26] describe several attacks that use subgroup confinement attacks to obtain a transcript collision and break protocol authentication.

To protect against subgroup confinement attacks, implementations should use prime-order subgroups with known subgroup order. Both parties must validate that the key exchange values they receive are in the proper subgroup. That is, for a known subgroup order q, a received Diffie-Hellman key exchange value y should satisfy $y^q \equiv 1 \mod p$. For a safe prime, it suffices to check that y is strictly between 1 and $p-1$.

Small subgroup key recovery attacks. Lim and Lee [54] discovered a further attack that arises when an implementation fails to validate subgroup order and resuses a static secret exponent for multiple key exchanges. A malicious party may be able to perform multiple subgroup confinement attacks for different prime factors q_i of $p-1$ and then use the Chinese remainder theorem to reconstruct the static secret exponent.

The attack works as follows. Let $p-1$ have many small factors $p-1 = q_1q_2\ldots q_n$. Mallory, a malicious client, uses the procedure described in Section II-A to find a generator of the subgroup g_i of order $q_i \mod p$. Then Mallory transmits g_i as her Diffie-Hellman key exchange value, and receives a message encrypted with Alice’s view of the shared secret $g_i^{x_a}$, which Mallory can brute force to learn the value of $x_a \mod q_i$. Once Mallory has repeated this process several times, she can use the Chinese remainder theorem to reconstruct $x_a \mod \prod_i q_i$. The running time of this attack is $\sum_i q_i$, assuming that Mallory performs an offline brute-force search for each subgroup.

<table>
<thead>
<tr>
<th>Application</th>
<th>Crypto Library</th>
<th>Short Exponent</th>
<th>Exponent Reuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenSSH</td>
<td>OpenSSL</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Cerberus</td>
<td>OpenSSL</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>GNU Isha</td>
<td>GnuTLS</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Dropbear</td>
<td>Lib/TomCrypt</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Lighttpd</td>
<td>OpenSSL</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Unbound</td>
<td>OpenSSL</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Exim</td>
<td>OpenSSL</td>
<td>Library</td>
<td>Yes</td>
</tr>
<tr>
<td>Postfix</td>
<td>OpenSSL</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

TABLE I: Common application behavior—Applications make a diverse set of decisions on how to handle Diffie-Hellman exponents, likely due to the plethora of conflicting, confusing, and incorrect recommendations available.

A randomly chosen prime p is likely to have subgroups of large enough order that this attack is infeasible to carry out for all subgroups. However, if in addition Alice’s secret exponent x_a is small, then Mallory only needs to carry out this attack for a subset of subgroups of orders q_1, \ldots, q_k satisfying $\prod_{i=1}^k q_i > x_a$, since the Chinese remainder theorem ensures that x_a will be uniquely defined. Mallory can also improve on the running time of the attack by taking advantage of the Pollard lambda algorithm. That is, she could use a small subgroup attack to learn the value of $x_a \mod \prod_{i=1}^k q_i$ for a subset of subgroups $\prod_{i=1}^k q_i < x_a$, and then use the Pollard lambda algorithm to reconstruct the full value of a, as it has now been confined to a smaller interval.

In summary, an implementation is vulnerable to small subgroup key recovery attacks if it does not verify that received Diffie-Hellman key exchange values are in the correct subgroup; uses a prime p such that $p-1$ has small factors; and reuses Diffie-Hellman secret exponent values. The attack is made even more practical if the implementation uses small exponents.

A related attack exists for elliptic curve groups: an invalid curve attack. Similarly to the case we describe above, the attacker generates a series of elliptic curve points of small order and sends these points as key exchange messages to the victim. If the victim does not validate that the received point is on the intended curve, they return a response that reveals information about the secret key modulo different group orders. After enough queries, the attacker can learn the victim’s entire secret. Jager, Schwenk, and Somorovsky [45] examined eight elliptic curve implementations and discovered two that failed to validate the received curve point. For elliptic curve groups, this attack can be much more devastating because the attacker has much more freedom in generating different curves, and can thus find many different small prime order subgroups. For the finite field Diffie-Hellman attack, the attacker is limited only to those subgroups whose orders are factors of $p-1$.

III. TLS

TLS (Transport Layer Security) is a transport layer protocol designed to provide confidentiality, integrity and (most commonly) one-side authentication for application sessions. It is widely used to protect HTTP and mail protocols.

A TLS client initiates a TLS handshake with the Client-Hello message. This message includes a list of supported
cipher suites, and a client random nonce r_c. The server responds with a ServerHello message containing the chosen cipher suite and server random nonce r_s, and a Certificate message that includes the server’s X.509 certificate. If the server selects a cipher suite using ephemeral Diffie-Hellman key exchange, the server additionally sends a ServerKeyExchange message containing the server’s choice of Diffie-Hellman parameters p and g, the server’s Diffie-Hellman public value $y_s = g^{x_s} \mod p$, a signature by the server’s private key over both the client and server nonces (r_c and r_s), and the server’s Diffie-Hellman parameters (p, g, and y_s). The client then verifies the signature using the public key from the server’s certificate, and responds with a ClientKeyExchange message containing the client’s Diffie-Hellman public value $y_c = g^{x_c} \mod p$. The Diffie-Hellman shared secret $Y = g^{x_c \cdot x_s} \mod p$ is used to derive encryption and MAC keys. The client then sends ChangeCipherSpec and Finished messages. The Finished message contains a hash of the handshake transcript, and is encrypted and authenticated using the derived encryption and MAC keys. Upon decrypting and authenticating this message, the server verifies that the hash of the transcript matches the expected hash. Provided the hash matches, the server then sends its own ChangeCipherSpec and Finished messages, which the client then verifies. If either side fails to decrypt or authenticate the Finished messages, or if the transcript hashes do not match, the connection fails immediately [28].

TLS also specifies a mode of using Diffie-Hellman with fixed parameters from the server’s certificate [62]. This mode is not forward secret, was never widely adopted, and has been removed from all modern browsers due to dangerous protocol flaws [44]. The only widely used form of Diffie-Hellman in TLS today is ephemeral Diffie-Hellman, described above.

A. Small Subgroup Attacks in TLS

Small subgroup confinement attacks. A malicious TLS server can perform a variant of the small subgroup attack against a client by selecting group parameters g and p such that g generates an insecure group order. TLS versions prior to 1.3 give the server complete liberty to choose the group, and they do not include any method for the server to specify the desired group order q to the client. This means a client has no feasible way to validate that the group sent by the server has the desired level of security or that a server’s key exchange value is in the correct group for a non-safe prime.

Similarly, a man in the middle with knowledge of the server’s long-term private signing key can use a small subgroup confinement attack to more easily compromise perfect forward secrecy, without having to rewrite an entire connection. The attack is similar to the one described by Bhargavan and Delignat-Lavaud [25]. The attacker modifies the server key exchange message, leaving the prime unchanged, but substituting a generator g_i of a subgroup of small order q_i for the group generator and g_i for the server’s key exchange value y_s. The attacker then forges a correct signature for the modified server key exchange message and passes it to the client. The client then responds with a client key exchange message $y_c = g_i^{x_c} \mod p$, which the man-in-the-middle leaves unchanged. The server’s view of the shared secret is then $g_i^{x_c \cdot x_s} \mod p$, and the client’s view of the shared secret is $g_i^{x_c} \mod p$. These views are identical when $x_s \equiv 1 \mod q_i$, so this connection will succeed with probability $1/q_i$. For small enough q_i, this enables a man in the middle to use a compromised server signing key to decrypt traffic from forward-secret ciphersuites with a reasonable probability of success, while only requiring tampering with a single handshake message, rather than having to actively rewrite the entire connection for the duration of the session.

Furthermore, if the server uses a static Diffie-Hellman key exchange value, then the attacker can perform a small subgroup key-recovery attack as the client in order to learn the server’s static exponent $x_s \mod q_i$ for the small subgroup. This enables the attacker to calculate a custom generator such that the client and server views of the shared secret are always identical, raising the above attack to a 100% probability of success.

Small subgroup key recovery attacks. In TLS, the client must authenticate the handshake before the server, by providing a valid Finished message. This forces a small subgroup key recovery attack against TLS to be primarily online. To perform a Lim-Lee small subgroup key recovery attack against a server static exponent, a malicious client initiates a TLS handshake and sends a generator g_i of a small subgroup of order q_i as its client key exchange message y_c. The server will calculate $Y_s = g_i^{x_s} \mod p$ as the shared secret. The server’s view of the shared secret is confined to the subgroup of order q_i. Since, g_i and y_s generate separate subgroups, the server’s public value $y_s = g_i^{x_s}$ gives the attacker no information about the value of the shared secret Y_s. Instead, the attacker must guess a value for $x_s \mod q_i$, and send the corresponding client Finished message. If the server continues the handshake, the attacker learns that the guess is correct. Therefore, assuming the server is reusing a static value for x_s, the attacker needs to perform at most q_i queries to learn the server’s secret $x_s \mod q_i$ [54]. This attack is feasible if q_i is small enough and the server reuses Diffie-Hellman exponents for sufficiently many requests.

The attacker repeats this process for many different primes q_i, and uses the Chinese remainder theorem to combine them modulo the product of the primes q_i. The attacker can also use the Pollard lambda algorithm to reconstruct any remaining bits of the exponent [54].

We note that the TLS False Start extension allows the server to send application data before receiving the client’s authentication [52]. The specification only allows this behavior for abbreviated handshakes, which do not include a full key exchange. If a full key exchange were allowed, the fact that the server authenticates first would allow a malicious client to mount a mostly offline key recovery attack.

B. OpenSSL

Prior to early 2015, OpenSSL defaulted to using static-ephemeral Diffie-Hellman values. Server applications generate a fresh Diffie-Hellman secret exponent on startup, and reuse this exponent until they are restarted. A server would be vulnerable to small subgroup attacks if it chose a DSA prime, explicitly configured the dh->length parameter to generate a short exponent, and failed to set SSL_OP_SINGLE_DH_USE to prevent repeated exponents. OpenSSL provides some test code for key generation which configures DSA group parameters, sets an exponent length to the group order, and correctly sets the SSL_OP_SINGLE_DH_USE to generate new exponents on every connection. We found this test code widely used across many applications. We discovered that Unbound, a DNS
When the subgroup order is specified, the exponent length is shortened to precisely the key recovery attack outlined in Section III-A.

We disclosed this vulnerability to OpenSSL in January 2016. The vulnerability was patched by including code to validate subgroup order when a subgroup was specified in a set of Diffie-Hellman group parameters. However, the update did not contain code to validate subgroup order for key exchange values, leaving OpenSSL users vulnerable to precisely the key recovery attack.

We examined the source code of multiple TLS implementations (Table II). Prior to January 2016, no TLS implementations that we examined validated group order, even for the well-known DSA primes from RFC 5114, leaving them vulnerable to small subgroup confinement attacks.

Most of the implementations we examined attempted to match exponent length to the perceived strength of the prime. For example, Mozilla Network Security Services (NSS), the TLS library used in the Firefox browser and some versions of Chrome [7], [36], uses NIST’s “comparable key strength” recommendations on key management [21], [22] to determine secret exponent lengths from the length of the prime. [2] Thus NSS uses 160-bit exponents with a 1024-bit prime, and 224-bit exponents with a 2048-bit prime. In fall 2015, NSS added an additional check to ensure that the shared secret $g^{x+2} \neq 1 \mod p$.

Several implementations go to elaborate lengths to match exponent length to perceived prime strength. The CRYPT library fits a quadratic curve to the small exponent attack cost table in the original van Oorschot paper [69] and uses the fitted curve to determine safe key lengths [41]. The Crypto++ library uses an explicit “work factor” calculation, evaluating the function $2.4n^{1/3} (\log n)^{2/3}$ [46]. Subgroup order and exponent lengths are set to twice the calculated work factor. The work factor calculation is taken from a 1995 paper by Odlyzko on integer factorization [58]. Botan, a C++ cryptography and TLS library, uses a similar work factor calculation, derived from RFC 3766 [42], which describes best practices as of 2004 for selecting public key strengths when exchanging symmetric keys. RFC 3766 uses a similar work factor algorithm to Odlyzko, intended to model the running time of the number-field sieve. Botan then doubles the length of the work factor to obtain subgroup and exponent lengths [9].

D. Measurements

We used ZMap [32] to probe the public IPv4 address space for hosts serving three TLS-based protocols: HTTPS, SMTP/STARTTLS, and POP3S. To determine which primes servers were using, we sent a ClientHello message containing only ephemeral Diffie-Hellman cipher suites. We combined this data with scans from Censys [30] to determine the overall population. The results are summarized in Table III.

In August 2016, we conducted additional scans of a random 1% sample of HTTPS hosts on the Internet. First, we checked for nontrivial small subgroup attack vulnerability. For servers that sent us a prime p such that $p - 1$ was divisible by 7, we attempted a handshake using a client key exchange value of

<table>
<thead>
<tr>
<th>Implementation</th>
<th>RFC 5114 Support</th>
<th>Allows Short Exponents</th>
<th>Reuses Exponents</th>
<th>Validates Subgroup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mozilla NSS</td>
<td>No</td>
<td>Yes, hardcoded</td>
<td>No</td>
<td>$g \leq 2$</td>
</tr>
<tr>
<td>OpenJDK</td>
<td>No</td>
<td>Yes, uses max of $p_{size} / 2$ and 384</td>
<td>No</td>
<td>$g \leq 2$</td>
</tr>
<tr>
<td>OpenSSL 1.0.2</td>
<td>Yes</td>
<td>Yes, if q set or if user sets a shorter length</td>
<td>Default until Jan ‘16</td>
<td>Yes, as of Jan ‘16</td>
</tr>
<tr>
<td>BouncyCastle</td>
<td>Yes</td>
<td>No</td>
<td>Application dependent</td>
<td>$g \leq 2$</td>
</tr>
<tr>
<td>Cryptlib</td>
<td>No</td>
<td>Yes, uses quadratic curve calculation</td>
<td>Application dependent</td>
<td>No</td>
</tr>
<tr>
<td>libTomCrypt</td>
<td>No</td>
<td>Yes, hardcoded</td>
<td>Application dependent</td>
<td>No</td>
</tr>
<tr>
<td>CryptoPP</td>
<td>No</td>
<td>Yes, uses work factor calculation</td>
<td>Application dependent</td>
<td>No</td>
</tr>
<tr>
<td>Botan</td>
<td>Yes</td>
<td>Yes, uses work factor calculation</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>GnuTLS</td>
<td>Application dependent</td>
<td>Yes, restricts to q_{size} (max 256)</td>
<td>Application dependent</td>
<td>No</td>
</tr>
</tbody>
</table>

TABLE II: TLS Library Behavior — We examined popular TLS libraries to determine which weaknesses from Section II-F were present. Reuse of exponents often depends on the use of the library; the burden is on the application developer to appropriately regenerate exponents. Botan and libTomCrypt both hardcode their own custom groups, while GnuTLS allows users to specify their own parameters.
TABLE III: IPv4 non-safe prime and static exponent usage — Although non-safe primes see widespread use across most protocols, only a small number of hosts reuse exponents and use non-safe primes; these hosts are prime candidates for a small subgroup key recovery attack.

TABLE IV: TLS key exchange validation — We performed a 1% HTTPS scan in August 2016 to check if servers validated received client key exchange values, offering generators of subgroups of order 1, 2 and 7. Our baseline DHE support number counts hosts willing to negotiate a DHE key exchange, and in the case of \(g_T \), if \(p - 1 \) is divisible by 7. We count hosts as “Accepted” if they reply to the ClientKeyExchange message with a Finished message. For \(g_T \), we expect this to happen with probability \(1/7 \), suggesting that nearly all of the hosts in our scan did not validate subgroup order.

\[g_T \mod p, \text{ where } g_T \text{ is a generator of a subgroup of order } 7. (7 \text{ is the smallest prime factor of } p - 1 \text{ for Group 22.}) \]
OpenSSL 512-bit prime with a single character difference in the hexadecimal representation. The resulting modulus that these servers use for their Diffie-Hellman key exchange is no longer prime. We include the factorization of this modulus along with the factors of the resulting group order in Table XII. The use of a composite modulus further decreases the work required to perform a small subgroup attack.

Although TLS also includes static Diffie-Hellman cipher suites that require a DSS certificate, we did not include them in our study; no browser supports static Diffie-Hellman [44], and Censys shows no hosts with DSS certificates, with only 652 total hosts with non-RSA or ECDSA certificates.

IV. IPsec

IPsec is a set of Layer-3 protocols which add confidentiality, data protection, sender authentication, and access control to IP traffic. IPsec is commonly used to implement VPNs. IPsec uses the Internet Key Exchange (IKE) protocol to determine the keys used to secure a session. IPsec may use IKEv1 [43] or IKEv2 [49]. While IKEv2 is not backwards-compatible with IKEv1, the two protocols are similar in message structure and purpose. Both versions use Diffie-Hellman to negotiate shared secrets. The groups used are limited to a fixed set of pre-determined choices, which include the DSA groups from RFC 5114, each assigned a number by IANA [49], [51], [53].

TABLE V: IPv4 top non-safe primes — Nine non-safe primes account for the majority of hosts using non-safe primes.

<table>
<thead>
<tr>
<th>Company</th>
<th>Product(s)</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ubiquiti Networks</td>
<td>airOS/EdgeOS</td>
<td>272,690</td>
</tr>
<tr>
<td>Cisco</td>
<td>DPC3848VM Gateway</td>
<td>65,026</td>
</tr>
<tr>
<td>WatchGuard</td>
<td>Fireware XTM</td>
<td>62,682</td>
</tr>
<tr>
<td>Supermicro</td>
<td>IPMI</td>
<td>42,973</td>
</tr>
<tr>
<td>ASUS</td>
<td>AiCloud</td>
<td>39,749</td>
</tr>
<tr>
<td>Electric Sheep Fencing</td>
<td>pfSense</td>
<td>14,218</td>
</tr>
<tr>
<td>Bouygues Telecom</td>
<td>Bbox</td>
<td>13,387</td>
</tr>
<tr>
<td>Other</td>
<td>—</td>
<td>135,432</td>
</tr>
</tbody>
</table>

TABLE VI: HTTPS support for RFC5114 Group 22 — In a 100% HTTPS scan performed in October 2016, we found that of the 12,835,911 hosts that accepted Diffie-Hellman key exchange, 901,656 used Group 22. We were able to download default web pages for 646,157 of these hosts, which we examined to identify companies and products.

IKEv1. IKEv1 [43], [55], [60] has two basic methods for authenticated key exchange: Main Mode and Aggressive Mode. Main Mode requires six messages to establish the requisite state. The initiator sends a Security Association (SA) payload, containing a selection of cipher suites and Diffie-Hellman groups they are willing to negotiate. The responder selects a cipher and responds with its own SA payload. After the cipher suite is selected, the initiator and responder both transmit Key Exchange (KE) payloads containing public Diffie-Hellman values for the chosen group. At this point, both parties compute shared key materials, denoted $SKDYID$. When using signatures for authentication, $SKDYID$ is computed $SKDYID = prf(N_g/N_r, g^{x_i})$. For the other two authentication modes, pre-shared key and public-key encryption, $SKDYID$ is derived from the pre-shared key and session cookies, respectively, and does not depend on the negotiated Diffie-Hellman shared secret.

Each party then in turn sends an authentication message (AUTH) derived from a hash over $SKDYID$ and the handshake. The authentication messages are encrypted and authenticated using keys derived from the Diffie-Hellman secret g^{x_i}. The responder only sends her AUTH message after receiving and validating the initiator’s AUTH message.

Aggressive Mode operates identically to Main Mode, but in order to reduce latency, the initiator sends SA and KE messages together, and the responder replies with its SA, KE, and AUTH messages together. In aggressive mode, the responder sends an authentication message first, and the authentication messages are not encrypted.

IKEv2. IKEv2 [48], [49] combines the SA and KE messages into a single message. The initiator provides a best guess ciphersuite for the KE message. If the responder accepts that proposal and chooses not to renegotiate, the responder replies with a single message containing both SA and KE payloads. Both parties then send and verify AUTH messages, starting with the initiator. The authentication messages are encrypted using session keys derived from the $SKDYID$ value which is derived from the negotiated Diffie-Hellman shared secret. The standard authentication modes use public-key signatures over the handshake values.
A. Small Subgroup Attacks in IPsec

There are several variants of small subgroup attacks against IKEv1 and IKEv2. We describe the attacks against these protocols together in this section.

Small subgroup confinement attacks. First, consider attacks that can be carried out by an attacking initiator or responder. In IKEv1 Main Mode and in IKEv2, either peer can carry out a small subgroup confinement attack against the other by sending a generator of a small subgroup as its key exchange value. The attacking peer must then guess the other peer’s view of the Diffie-Hellman shared secret to compute the session keys to encrypt its authentication message, leading to a mostly online attack. However, in IKEv1 Aggressive Mode, the responder sends its AUTH message before the initiator, and this value is not encrypted with a session key. If signature authentication is being used, the SKEYID and resulting hashes are derived from the Diffie-Hellman shared secret, so the initiator can perform an offline brute-force attack against the responder’s authentication message to learn their exponent in the small subgroup.

Now, consider a man-in-the-middle attacker. Bhargavan, Delignat-Lavaud, and Pironti [25] describe a transcript synchronization attack against IKEv2 that relies on a small subgroup confinement attack. A man-in-the-middle attacker initiates simultaneous connections with an initiator and responder using identical nonces, and sends a generator g_i for a subgroup of small order q_i to each as its KE message. The two sides have a $1/q_i$ chance of negotiating an identical shared secret, so an authentication method depending only on nonces and shared secrets could be forwarded, and the session keys would be identical.

If the attacker also has knowledge of the secrets used for authentication, more attacks are possible. Similar to the attack described for TLS, such an attacker can use a small subgroup confinement attack to force a connection to use weak encryption. The attacker only needs to rewrite a small number of handshake messages; any further encrypted communications can then be decrypted at leisure without requiring the man-in-the-middle attacker to continuously rewrite the connection. We consider a man-in-the-middle attacker who modifies the key exchange message from both the initiator and responder to substitute a generator g_i of a subgroup of small order q_i. The attacker must then replace the handshake authentication messages, which would require knowledge of the long-term authentication secret. We describe this attack for each of pre-shared key, signatures, and public-key authentication.

For pre-shared key authentication in IKEv1 Main Mode, IKEv1 Aggressive Mode, and IKEv2, the man-in-the-middle attacker must only know the pre-shared key to construct the authentication hash; the authentication message does not depend on the negotiated Diffie-Hellman shared secret. With probability $1/q_i$, the two parties will agree on the Diffie-Hellman shared secret. The attacker can then brute force this value after viewing messages encrypted with keys derived from it.

For signature authentication in IKEv1 Main Mode and in IKEv2, the signed hash transmitted from each side is derived from the nonces and the negotiated shared secret, which is confined to one of q_i possible values. The attacker must know the private signing keys for both initiator and responder and brute force SKEYID from the received signature in order to forge the modified authentication signatures on each side. The communicating parties will have a q_i chance of agreeing on the same value for the shared secret to allow the attack to succeed. For IKEv1 Aggressive Mode, the attack can be made to succeed every time. The responder’s key exchange message is sent together with their signature which depends on the negotiated shared secret, so the man-in-the-middle attacker can brute force the q_i possible values of the responders private key x_r, and replace the responder’s key exchange message with q_i^{-1}, forging an appropriate signature with their knowledge of the signing key.

For public key authentication in IKEv1 Main Mode, IKEv1 Aggressive Mode, and IKEv2, the attacker must know the private keys corresponding to the public keys used to encrypt the ID and nonce values on both sides in order to forge a valid authentication hash. Since the authentication does not depend on the shared Diffie-Hellman negotiated value, a man-in-the-middle attacker must then brute force the negotiated shared key once they receive a message encrypted with the derived key. The two parties will agree on their view of the shared key with probability $1/q_i$, allowing the attack to succeed.

Small subgroup key recovery attacks. Similar to TLS, an IKE responder that reuses private exponents and does not verify that the initiator key exchange values are in the correct subgroup is vulnerable to a small subgroup key recovery attack. The most recent version of the IKEv2 specification has a section discussing reuse of Diffie-Hellman exponents, and states that “because computing Diffie-Hellman exponentials is computationally expensive, an endpoint may find it advantageous to reuse those exponentials for multiple connection setups” [49]. Following this recommendation could leave a host open to a key recovery attack, depending on how exponent reuse is implemented. A small subgroup key recovery attack on IKE would be primarily offline for IKEv1 with signature authentication and for IKEv2 against the initiator.

For each subgroup of order q_i, the attacker’s goal is to obtain a responder AUTH message, which depends on the secret chosen by the responder. If an AUTH message can be obtained, the attacker can brute-force the responder’s secret within the subgroup offline. This is possible if the server supports IKEv1 Aggressive Mode, since the server authenticates before the client, and signature authentication produces a value dependent on the negotiated secret. In all other IKE modes, the client authenticates first, leading to an online attack. The flow of the attack is identical to TLS; for more details see Section III.

Ferguson and Schneier [34] describe a hypothetical small-subgroup attack against the initiator where a man-in-the-middle attacker abuses undefined behavior with respect to UDP packet retransmissions. A malicious party could “retransmit” many key exchange messages to an initiator and potentially receive a different authentication message in response to each, allowing a mostly offline key recovery attack.

B. Implementations

We examined several open-source IKE implementations to understand server behavior. In particular, we looked for implementations that generate small Diffie-Hellman exponents, repeat exponents across multiple connections, or do not correctly validate subgroup order. Despite the suggestion in IKEv2 RFC 7296 to reuse exponents [49], none of the implementations that we examined reused secret exponents.

All implementations we reviewed are based on
FreeS/WAN [13], a reference implementation of IPSec. The final release of FreeS/WAN, version 2.06, was released in 2004. Version 2.04 was forked into Openswan [16] and strongSwan [17], with a further fork of Openswan into Libreswan [14] in 2012. The final release of FreeS/WAN used constant length 256-bit exponents but did not support RFC 5114 DSA groups, offering only the Oakley 1024-bit and 1536-bit groups that use safe primes.

Openswan does not generate keys with short exponents. By default, RFC 5114 groups are not supported, although there is a compile-time option that can be explicitly set to enable support for DSA groups. strongSwan both supports RFC 5114 groups and has explicit hard-coded exponent sizes for each group. The exponent size for each of the RFC 5114 DSA groups matches the subgroup size. However, these exponent sizes are only used if the `dh_exponent_ansi_x9_42` configuration option is set. It also includes a routine inside an `#ifdef` that validates subgroup order by checking that \(g^q \equiv 1 \mod p \), but validation is not enabled by default. Libreswan uses Mozilla Network Security Services (NSS) [7] to generate Diffie-Hellman keys. As discussed in Section III-C, NSS generates short exponents for Diffie-Hellman groups. Libreswan was forked from Openswan after support for RFC 5114 was added, and retains support for those groups if it is configured to use them.

Although none of the implementations we examined were configured to reuse Diffie-Hellman exponents across connections, the failure to validate subgroup orders even for the pre-specified groups renders these implementations fragile to future changes and vulnerable to subgroup confinement attacks.

Several closed source implementations also provide support for RFC 5114 Group 24. These include Cisco’s IOS [27], Juniper’s Junos [47], and Windows Server 2012 R2 [56]. We were unable to examine the source code for these implementations to determine whether or not they validate subgroup order.

\section*{C. Measurements}

We performed a series of Internet scans using ZMap to identify IKE responders. In our analysis, we only consider hosts that respond to our ZMap scan probes. Many IKE hosts that filter their connections based on IP are excluded from our results. We further note that, depending on VPN server configurations, some responders may continue with a negotiation that uses weak parameters until they are able to identify a configuration for the connecting initiator. At that point, they might reject the connection. As an unauthenticated initiator, we have no way of distinguishing this behavior from the behavior of a VPN server that legitimately accepts weak parameters. For a more detailed explanation of possible IKE responder behaviors in response to scanning probes, see Wouters [70].

In October 2016, we performed a series of scans offering the most common cipher suites and group parameters we found in implementations to establish a baseline population for IKEv1 and IKEv2 responses. For IKEv1, the baseline scan offered Oakley groups 2 and 14 and RFC 5114 groups 22, 23, and 24 for the group parameters; SHA1 or SHA256 for the hash function; pre-shared key or RSA signatures for the authentication method; and AES-CBC, 3DES, and DES for the encryption algorithm. Our IKEv2 baseline scan was similar, but also offered the 256-bit and 384-bit ECP groups and AES-GCM for authenticated encryption.

On top of the baseline scans, we performed additional scans to measure support for the non-safe RFC 5114 groups and for key exchange parameter validation. Table VII shows the results of the October IKE scans. For each RFC 5114 DSA group, we performed four handshakes with each host; the first test for support by sending a valid client key exchange value, and the three others tested values that should be rejected by a properly-validating host. We did not scan using the key exchange value 0 because of a vulnerability present in unpatched Libreswan and Openswan implementations that causes the IKE daemon to restart when it receives such a value [3].

We considered a host to accept our key exchange value if after receiving the value, it continued the handshake without any indication of an error. We found that 33.2% of IKEv1 hosts and 17.7% of IKEv2 hosts that responded to our baseline scans supported using one of the RFC 5114 groups, and that a surprising number of hosts failed to validate key exchange values. 24.8% of IKEv1 hosts that accepted Group 23 with a valid key exchange value also accepted \(1 \mod p \) or \(-1 \mod p\) as a key exchange value, even though this is explicitly warned against in the RFC [59]. This behavior leaves these hosts open to a small subgroup confinement attack even for safe primes, as described in Section II-F.

For safe groups, a check that the key exchange value is strictly between 1 and \(p-1 \) is sufficient validation. However, when using non-safe DSA primes, it is also necessary to verify that the key exchange value lies within the correct subgroup (i.e., \(g^q \equiv 1 \mod p \)). To test this case, we constructed a generator of a subgroup that was not the intended DSA subgroup, and offered that as our key exchange value. We did not find any IKEv1 hosts that rejected this key exchange value after previously accepting a valid key exchange value for the given group. For IKEv2, the results were similar with the exception of Group 24, where still over 93% of hosts accepted this key exchange value. This suggests that almost no hosts supporting DSA groups are correctly validating subgroup order.

We observed that across all of the IKE scans, 109 IKEv1 hosts and 52 IKEv2 hosts repeated a key exchange value. This may be due to entropy issues in key generation rather than static Diffie-Hellman exponents; we also found 15,891 repeated key exchange values across different IP addresses. We found no hosts that used both repeated key exchange values and non-safe groups. We summarize these results in Table III.

\section*{V. SSH}

SSH contains three key agreement methods that make use of Diffie-Hellman. The “Group 1” and “Group 14” methods denote Oakley Group 2 and Oakley Group 14, respectively [71]. Both of these groups use safe primes. The third method, “Group Exchange”, allows server to select a custom group [35]. The group exchange RFC specifies that all custom groups should use safe primes. Despite this, RFC 5114 notes that group exchange method allows for its DSA groups in SSH, and advocates for their immediate inclusion [53].

In all Diffie-Hellman key agreement methods, after negotiating cipher selection and group parameters, the SSH client generates a public key exchange value \(y_c = g^{x_c} \mod p \) and sends it to the server. The server computes its own Diffie-Hellman public value \(y_s = g^{x_s} \mod p \) and sends it to the client, along with a signature from its host key over the resulting shared secret \(Y = g^{x_c x_s} \mod p\) and the hash of the handshake so far. The client verifies the signature before continuing.
will succeed with probability

only need to send a single key exchange message per subgroup.

mostly offline key recovery attack, as a malicious client would

Small subgroup key recovery attacks. Since the server

immediately sends a signature over the public values and the

Handshake initiated

<table>
<thead>
<tr>
<th>Key Exchange Value</th>
<th>Handshake Initiated</th>
<th>Accepted</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 mod p</td>
<td>175.6 K</td>
<td>5.7 K</td>
</tr>
<tr>
<td>1 mod p</td>
<td>175.0 K</td>
<td>43.9 K</td>
</tr>
<tr>
<td>−1 mod p</td>
<td>176.0 K</td>
<td>59.0 K</td>
</tr>
</tbody>
</table>

TABLE VIII: SSH validation—In a 1% SSH scan performed in February 2016, we sent the key exchange values \(y_e = 0, 1 \) and \(p - 1 \). We count hosts as having initiated a handshake if they send a SSH_MSG_KEX_DH_GEX_GROUP, and we count hosts as “Accepted” if they reply to the client key exchange message with a SSH_MSG_KEX_DH_GEX_REPLY.
whether the generator generates the entire group or generates a small subgroup, allowing an online attacker to compute $q = g^{(p - 1)/2}$. This is particularly effective when $q < 64$ bits. The small subgroup attacks require a number of special conditions to be satisfied, including knowing that the subgroup order is at least 8 bits smaller than the prime. For a full key recovery attack to be possible, the server must additionally reuse a small static exponent. In one sense, it is surprising that any implementation might satisfy all of the requirements for a full key recovery attack at once. However, when considering all of the choices that cryptographic libraries leave to application developers when using Diffie-Hellman, it is surprising that any protocol implementations manage to use Diffie-Hellman securely at all.

We now use our results to draw lessons for the security and cryptographic communities, provide recommendations for future cryptographic protocols, and suggest further research.

RFC 5114 Design Rationale. Neither NIST SP 800-56A nor RFC 5114 give a technical justification for fixing a much smaller subgroup order than the prime size. Using a shorter private exponent comes with performance benefits. However, there are no known attacks that would render a short exponent used with a safe prime less secure than an equivalently-sized exponent used in a subgroup with order matched to the exponent length. The cryptanalyses of both short exponents and small subgroups are decades old.

If anything, the need to perform an additional modular exponentiation to validate subgroup order makes Diffie-Hellman over DSA groups more expensive than the safe prime case, for identical exponent lengths. As a more minor effect, a number field sieve-based cryptanalytic attack against a DSA prime is computationally slightly easier than against a safe prime. The design rationale may have its roots in preferring to implicitly use the assumption that Diffie-Hellman is secure for a small

<table>
<thead>
<tr>
<th>Prime</th>
<th>Exact Order Known</th>
<th>Exact Order Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lg(p)$</td>
<td>160 bits</td>
<td>224 bits</td>
</tr>
<tr>
<td>512</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>768</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>2048</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3072</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE IX: Distribution of orders for groups with non-safe primes—For groups for which we were able to determine the subgroup order exactly, 160-bit subgroup orders are common. We classify other groups to be likely DSA groups if we know that the subgroup order is at least 8 bits smaller than the prime.
was broken in a large number of non-browser TLS applications. These exposed knobs are likely due to a prioritization of convenience over security. These confusing options in cryptographic implementations are not confined to primitive design: Georgiev et al. [37] discovered that SSL certificate validation was broken in a large number of non-browser TLS applications due to developers misunderstanding and misusing library calls. In the case of the small subgroup attacks, activating most of the conditions required for the attack will provide slight performance gains for an application: using a small exponent decreases the work required for exponentiation, reusing Diffie-Hellman exponents saves time in key generation, and failing to validate subgroup order saves another exponentiation. It is not reasonable to assume that applications developers have enough understanding of algebraic groups to be able to make the appropriate choices to optimize performance while still providing sufficient security for their implementation.

Cryptographic standards

Cryptographic recommendations from standards committees are often too weak or vague, and, if strayed from, provide little recourse. The purpose of standardized groups and standardized validation procedures is to help remove the onus from application developers to know and understand the details of the cryptographic attacks.

A developer should not have to understand the inner workings of Pollard lambda and the number field sieve in order to size an exponent; this should be clearly and unambiguously defined in a standard. However, the tangle of RFCs and standards attempting to define current best practices in key generation and parameter sizing do not paint a clear picture, and instead describe complex combinations of approaches and parameters, exposing the fragility of the cryptographic ecosystem. As a result, developers often forget or ignore edge cases, leaving many implementations of Diffie-Hellman key exchange too close to vulnerable for comfort. Rather than provide the bare minimums for security, the cryptographic recommendations from standards bodies should be designed for defense-in-depth such that a single mistake on the part of a developer does not have disastrous consequences for security. The principle of defense-in-depth has been a staple of the systems security community; cryptographic standards should similarly be designed to avoid fragility.

Protocol design

The interactions between cryptographic primitives and the needs of protocol designs can be complex. The after-the-fact introduction of RFC 5114 primes illustrates some of the unexpected difficulties: both IKE and SSH specified group validation only for safe primes, and a further RFC specifying extra group validation checks needed to be defined for IKE. Designing protocols to encompass many unnecessary functions, options, and extensions leaves room for implementation errors and makes security analysis burdensome. IKE is a notorious example of a difficult-to-implement protocol with many edge cases, Just Fast Keying (JFK), a protocol created as a successor to IKEv1, was designed to be an exceedingly simple key exchange protocol without the unnecessarily complicated negotiations present in IKE [19]. However, the IETF instead standardized IKEv2, which is nearly as complicated as IKEv1. Protocols and cryptosystems should be designed with the developer in mind—easy to implement and verify, with limited edge cases. The worst possible outcome is a system that appears to work, but provides less security than expected.

To construct such cryptosystems, secure-by-default primitives are key. As we show in this paper, finite-field based

TABLE XI: Attacking RFC 5114 groups — We show the log of the amount of work in bits required to perform a small subgroup key recovery attack against a server that both uses a static Diffie-Hellman exponent of the same size as the subgroup order and fails to check group order.

<table>
<thead>
<tr>
<th>Group</th>
<th>Exponent</th>
<th>Size</th>
<th>Online Work</th>
<th>Offline Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 22</td>
<td>160</td>
<td>8</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Group 23</td>
<td>224</td>
<td>33</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Group 24</td>
<td>256</td>
<td>32</td>
<td>94</td>
<td></td>
</tr>
</tbody>
</table>

TABLE X: Full key recovery attack complexity — We estimate the amount of work required to carry out a small subgroup key recovery attack, and show the prevalence of those groups in the wild. Hosts are vulnerable if they reuse exponents and fail to check subgroup order.
Diffie-Hellman has many edge cases that make its correct use difficult, and which occasionally arise as bugs at the protocol level. For example, SSH and TLS allow the server to generate arbitrary group parameters and send them to the client, but provide no mechanism for the server to specify the group order so that the client can validate the parameters. Diffie-Hellman key exchange over groups with different properties cannot be treated as a black-box primitive at the protocol level.

Recommendations. As a concrete recommendation, modern Diffie-Hellman implementations should prefer elliptic curve groups over safe curves with proper point validation [24]. These groups are much more efficient and have shorter key sizes than groups over safe curves with proper point validation [24]. These recommendations are based upon work supported by the U.S. National Science Foundation under Grants No. CNS-1345254, CNS-1408734, CNS-1409505, CNS-1505799, CNS-1513671, and CNS-1518888, an Alfred P. Sloan Foundation Research Fellowship, and a gift from Cisco.

REFERENCES

