
This paper appeared in 1st Workshop on the Security of Cyber Physical Systems
(WOS-CPS), Vienna, Austria, September 2015.

Umbra: Embedded Web Security through
Application-Layer Firewalls

Travis Finkenauer and J. Alex Halderman

University of Michigan
tmfink@umich.edu

jhalderm@umich.edu

Abstract Embedded devices with web interfaces are prevalent, but, due
to memory and processing constraints, implementations typically make
use of Common Gateway Interface (CGI) binaries written in low-level,
memory-unsafe languages. This creates the possibility of memory corrup-
tion attacks as well as traditional web attacks. We present Umbra, an
application-layer firewall specifically designed for protecting web inter-
faces in embedded devices. By acting as a “friendly man-in-the-middle,”
Umbra can protect against attacks such as cross-site request forgery
(CSRF), information leaks, and authentication bypass vulnerabilities. We
evaluate Umbra’s security by analyzing recent vulnerabilities listed in
the CVE database from several embedded vendors and find that it would
have prevented half of the vulnerabilities. We also show that Umbra
comfortably runs within the constraints of an embedded system while
incurring minimal performance overhead.

Keywords: embedded security, firewall, web security

1 Introduction

Embedded devices such as routers [16], printers [26], and supervisory control
and data acquisition (SCADA) systems [8, 53] are frequently managed through
web interfaces, which potentially create an opening for remote attackers. Many
of these systems are critical, such as SCADA systems that manage utilities and
medical devices that support life directly [22]. These web interfaces often use
Common Gateway Interface (CGI) binaries implemented in low-level languages,
such as C, which introduces the possibility of memory corruption attacks and
input validation vulnerabilities. In one recent example, researchers found that an
embedded web interface’s login page had remotely exploitable buffer overflow
vulnerabilities in the username and password fields, which would allow an at-
tacker to take control over the host system [6]. The same implementation was
also vulnerable to several other textbook attacks, including shell injection and
authentication bypass.

However, this is not a case of a single careless vendor that makes products
with vulnerabilities; embedded devices in general tend not to have strong security.

2 Finkenauer and Halderman

With the recent Misfortune Cookie vulnerability, over 200 models of routers
from several vendors were found to be using an out-of-date web server that was
vulnerable a memory corruption attack, allowing an attacker to gain complete
control over the router [9]. Many vendors were using a decade-old version of the
RomPager web server in their device firmware. Problems like these are all too
common, and, coupled with the fact that embedded devices can act as a foothold
into a target network [29], they make embedded web interfaces an attractive
attack vector for prospective intruders.

Ideally, all the code in an embedded device would be subjected to a security
audit. However, such audits are expensive and time consuming, require security
expertise, and may not be feasible when embedded devices reuse off-the-shelf
closed-source components [43]. As an alternative, we propose introducing a small
layer of security software that can be integrated into many kinds of embedded
devices and act as a “friendly man-in-the-middle” that enforces a security policy
set by the developers of each device. Such an application-layer firewall can provide
concentrated protection at the web interface’s attack surface and greatly reduce
overall vulnerability at low cost.

We present Umbra, our implementation of an application-layer firewall that
can be easily integrated with preexisting embedded systems to provide additional
security. Umbra is designed to work with existing web server binaries, to be simple
to configure, and to work within the limited resources of embedded systems.

In order for a manufacturer-side security solution to garner adoption, it must
have small perceived cost to developers. For example, enabling stack canaries
only requires a compiler flag and has gained wide adoption; today’s compilers
often enable stack canaries by default [13, 57]. In contrast, various heavy-weight
approaches, such as dynamic taint tracking have not gained traction, because
they introduce on the order of two times slowdown [7,15]. Since Umbra acts as
a “shim” in front of existing web servers, manufacturers can keep their existing
code and thus reduce the cost to adopting security. Also, embedded devices’
code is often licensed from third-party vendors, so the embedded developer does
not always have the source code for all parts of the firmware. Umbra works on
systems where source code is not available.

Umbra needs to have information about the web application being protected.
We define a policy language that allows embedded system developers to easily
describe security properties for an HTTP interface, such as the set of allowed
characters or maximum length for HTTP parameters. The Umbra shim is compiled
together with these policies and enforces the specified properties.

We evaluate Umbra’s functionality and performance. In a review of recent
vulnerabilities in some of Umbra’s target devices, we find that Umbra would have
prevented or mitigated more than half of these issues. We also show that when
running on a Raspberry Pi system with OpenWrt, Umbra adds only 5ms (about
3%) to average page download times, demonstrating that it comfortably runs
within the resource constraints of embedded Linux systems.

Source Code Release We are releasing our Umbra prototype as open-source
software. It is available at https://github.com/umbra-firewall/umbra.

https://github.com/umbra-firewall/umbra

Embedded Web Security through Application-Layer Firewalls 3

2 Related Work

There are various standalone application-layer firewalls that secure HTTP in-
terfaces, including Barracuda Web Application Firewall [3], Cisco ACE Web
Application Firewall [10], and HP TippingPoint [27]. Some of these devices even
provide features such as outbound filtering of sensitive data, including credit
card and social security numbers, which can aid organizations in being compliant
with the Payment Card Industry Data Security Standard (PCI DSS) [47].

IronBee and ModSecurity are examples of host-based application layer fire-
walls. ModSecurity supports Apache, Nginx, and Microsoft IIS web servers, and
IronBee supports Apache and Nginx [48,56]. These web servers are not commonly
used in embedded systems because of their larger CPU, memory, and storage
footprint compared to special-purpose embedded servers. Instead, embedded
devices use servers such as lighttpd [33], uhttpd [45], or a custom HTTP server
(e.g., [37]). Hence, these existing solutions are not appropriate for integration
with embedded devices.

Many recent studies have demonstrated vulnerabilities in embedded devices—
including traffic light cameras [23], server lights-out management controllers [6],
and automobile controller-area network (CAN) buses [50], to name just a few—
and the trend towards the “Internet of Things” suggests that there will be vastly
more embedded devices in the future [36]. Many embedded devices get connected
to the public Internet, where they can be mapped and probed with publicly
available tools [19]. In one case, a vulnerability in just two UPnP libraries affected
2% of public IPv4 addresses [42]. The security of embedded devices is a significant
and growing issue, and the widespread vulnerability seen among today’s devices
demonstrates that even basic network protections are often absent.

3 Design and Implementation

Embedded systems may often be administered through a variety of protocols,
including HTTP, SSH, Telnet, IPMI, and proprietary protocols [25, 26, 31, 55].
HTTP also sometimes acts as the transport for other protocols (such as SOAP [34]
and HNAP [11]) and REST style interfaces [46]. Since HTTP is widely used and
subject to a range of common vulnerabilities, Umbra focuses on defending web
interfaces, though the architecture could be extended to support other protocols.

In this work, we only consider attacks targeting embedded web interfaces,
through either HTTP or HTTPS. Our threat model assumes that the attacker
does not have valid credentials or physical access to the target. For example,
the attacker can submit arbitrary content to forms or visit arbitrary URLs
corresponding to the targeted device. We also consider attacks where a legitimate
user may visit an attacker-controlled web page to allow for cross-site request
forgery (CSRF) attacks.

Umbra works by acting as a transparent proxy between clients and the web
server, as illustrated in Figure 1. The pass-through is achieved by introducing a
small software layer, which we call the Umbra shim, that runs on the embedded

4 Finkenauer and Halderman

Figure 1. Umbra Architecture—A lightweight software “shim” runs on the embed-
ded device and transparently proxies client requests, rejecting those that are malformed
or that do not match a predefined security policy.

device and listens on the standard HTTP or HTTPS port. When the Umbra
shim receives client requests, it checks to ensure that they comply with a security
policy. This policy, defined in advance by the device manufacturer, specifies which
security features should be applied and how the features should be enforced.
For example, the policy might dictate the maximum allowed length for HTTP
form inputs and specify a whitelist of permitted characters. (For details, see
Section 3.2.) Umbra forwards requests that satisfy the policy to the original
embedded web server and responds with rejections to requests that do not.

Umbra is designed to be integrated into device firmware by the manufacturer.
To apply Umbra to an existing device, the manufacturer must:

1. Write a security policy tailored to the device’s embedded web application.
2. Compile the Umbra shim for the embedded device. The policy gets compiled

into the Umbra binary.
3. Configure the device’s existing web server to listen on an alternate port and

on the loopback interface.
4. Set the Umbra shim to run at boot time, listening on the default web port

on the external interface.

Note that a device maker can add Umbra to its firmware without having to
modify the source code for the existing web application.

3.1 Security Features

Our Umbra implementation is designed to protect against a range of common
attacks, as summarized in Table 1. By adjusting the global settings in the security
policy, it can be configured to have any combination of the security features
described below:

Embedded Web Security through Application-Layer Firewalls 5

Vulnerability Security Features

XSS Parameter whitelist

CSRF CSRF protection

Authentication bypass Authentication enforcement
HTTP method whitelist

Information leak
Authentication enforcement
HTTP method whitelist
Directory traversal check

CGI memory corruption
Parameter character whitelist
Parameter length check
Header field length limit

Directory traversal Directory traversal check

Table 1. Umbra Security Features—Umbra’s security features mitigate or protect
against a variety of common attacks.

CSRF Protection Cross-site request forgery (CSRF) attacks occur when
an attacker causes a victim to perform an unintended action while the victim
is logged into a target website [4]. For example, the victim might visit an
attacker-controlled web page that uses JavaScript to make a POST request to
http://target-site.com/delete-account. Since the victim’s browser is logged in
to the target site, the request includes the victim’s session cookies, and the site
accepts this request as authorized.

Umbra prevents CSRF attacks by using a CSRF-prevention token [4], a well-
known technique used by many web frameworks [5,17]. To implement this defense,
Umbra generates a random CSRF-prevention token for each browser session,
which it sends as a cookie in every HTTP response. The shim also modifies
pages that are specified in the security policy as requiring CSRF protection. It
injects JavaScript into these pages that modifies HTML forms to add a hidden
field containing the same token. For pages that the security policy specifies as
receiving a form action from a CSRF-protected form, Umbra verifies that the
submitted data contains a token that matches the one in the client’s cookie.

Pages that both submit and receive a CSRF protected form (e.g., pages with
self-referencing forms) present a complication, since a client would never be able
to navigate directly to the page with the correct CSRF token. For such pages,
the shim only enforces the presence of a CSRF token parameter for HTTP POST
requests, not GET requests.

Although this approach requires client browsers to have JavaScript enabled,
this is a reasonable assumption, as many embedded web interfaces require
JavaScript (e.g., [37, 55]). A downside to this technique is that it only works
when HTML forms send requests, and hence would not work when other meth-
ods are used to send HTTP requests, such as JavaScript’s XMLHttpRequest
or browser plug-ins. Device manufacturers would need to manually implement

http://target-site.com/delete-account

6 Finkenauer and Halderman

CSRF protection for these methods. We note that, as with other common CSRF
defenses, an attacker could bypass the protection by exploiting a separate XSS
vulnerability [12].

Page-level Authentication Enforcement A common vulnerability in em-
bedded devices is where page-level authentication is not properly enforced. For
example, in a set of five simultaneously-disclosed vulnerabilities found in D-Link
IP cameras, four were due to incorrect authentication [49]. With another brand
of IP camera, an attacker could visit most pages without any authentication [18].

To protect against such vulnerabilities, the Umbra shim enforces RFC 2617
HTTP Basic Authentication [21]. The suggested configuration would be to
require authentication by default and specify pages that do not require authen-
tication, such as a status page or login page. The shim reads credentials from
a file specified as a command-line parameter. This file is reloaded on each page
request, so the web application may change the credentials by modifying this
file at run time.

Directory Traversal Protection Another common class of attacks involves
directory traversal vulnerabilities (e.g., [37]), where an attacker controls part of
a file path and can inject a relative path to escape a directory. For example, an
attacker may be able to inject a path such as “../../passwords.txt” to read
the password file stored two directories above. To guard against this, the Umbra
shim blocks HTTP requests with URLs that contain two periods in a row (“..”).

The directory traversal protection does not currently attempt to check for
directory traversal in HTTP parameters. Future versions of Umbra might add
this as a per-parameter option, although this would introduce further complexity
to the security policies.

HTTP Method Whitelist HTTP allows for pages to be accessed via different
methods, such as GET, POST, or HEAD. Different web applications may not
account for pages being viewed with an unexpected method and may leak
information unintentionally. In order to prevent this, Umbra security policies can
specify which HTTP methods are allowed for each page.

HTTP Header Length Limits The HTTP protocol includes headers that
provide metadata about requests and responses, such as the client’s user agent
or the language of a response. Maliciously crafted headers have been used to
exploit buffer overviews and command injection vulnerabilities in embedded web
applications [14]. Umbra can be configured to limit the length of both HTTP
header fields and values. If the length of any field name or value exceeds the
corresponding maximum length, the shim will block the request.

Per-parameter Limits There are two options that can be enforced on a
per-HTTP-parameter basis. These protections can help mitigate various input
validation vulnerabilities—such as shell injection, SQL injection, and cross-site
scripting—as well as memory corruption attacks. The first is character whitelists,

Embedded Web Security through Application-Layer Firewalls 7

which cause the shim to limit input characters to those from a specified set, such
as lowercase letters and numbers. This is specified with a regular expression
character class, such as [a-z0-9]. The second protection is length enforcement,
in which the shim ensures that parameters do not exceed a given number of
characters, such as the name and password field for a login page [6].

3.2 Security Policy Language

The embedded developer must specify the desired security policy for Umbra,
and we provide a policy language for this purpose. The language is designed to
make it easy to specify conservative settings globally and relax them for specific
pages as necessary for compatibility. There are three sections in the configuration
file: global configuration, default page policy, and per-page policy. Each section
consists of a JSON object with the options specified as member pairs.

The global_config section includes directives for enabling and disabling
security features. For example, to enable CSRF prevention, the user would add
“enable_csrf_protection”: true. This global configuration section also has
global options that are not page specific, such as the maximum allowed header
field lengths.

The default_page_config section sets the default policy for all pages. Each
page-level option must have a default value specified here.

The page_config section sets policies for specific URI paths that override
some or all of the default policy options. If the policy for certain options is not
specified, then the default page policy will be used for those options. In this sense,
each page inherits the default policy. For example, the default policy may be to
enforce authentication for a page; however, the developer may want a status page
to be visible without requiring authentication, so the developer could disable the
authentication check for the status page.

In the per-page policy section, options for specific parameters can be specified,
such as a character whitelist and length limits. This allows for parameter-level
control of the security policy. For example, in Figure 2, the favorite_vowel
parameter has a max length of six and only accepts characters that are vowels.

The configuration is interpreted with Python, which outputs C code that is
compiled into the Umbra shim. With this technique, there does not need to be C
code that interprets the configuration at run time, keeping the resulting binary
smaller and the C code simpler.

We give a simple example of a security policy in Figure 2. The global configu-
ration section enables several security features. The default page policy indicates
that by default, GET and HEAD requests are allowed, authentication is required,
no CSRF protection is used, and parameters are limited to a length of 30 and
alphanumeric characters. There are two pages for which the default policy is
overridden. For the root page (/), no authentication is required to view the page,
and forms on the page will include the hidden CSRF token (see Section 3.1). The
/cgi-bin/favorites page has a parameter that allows only vowels and another
parameter that only allows numbers.

8 Finkenauer and Halderman

{
" global_config ": {

" enable_request_type_check ": true,
" enable_param_len_check ": true,
" enable_param_whitelist_check ": true,
" enable_csrf_protection ": true,
" enable_authentication_check ": true,
" session_life_seconds ": 300

},
" default_page_config ": {

" request_types ": ["GET", "HEAD"],
" requires_login ": true,
" has_csrf_form ": false ,
" receives_csrf_form_action ": false ,
" max_param_len ": 30,
" whitelist ": "[a-zA -z0-9]"

},
" page_config ": {

"/":{
" requires_login ": false,
" has_csrf_form ": true

},
"/cgi -bin/ favorites ": {

" request_types ": ["POST"],
" receives_csrf_form_action ": true,
" params ": {

" favorite_vowels ": {
" max_param_len ": 6,
" whitelist ": "[aeiouy]"

},
" favorite_number ": {

" max_param_len ": 3,
" whitelist ": "[0-9]"

}
}

}
}

}

Figure 2. Sample Umbra Security Policy—This is an example of a security policy
file. Path-specific rules for / and /cgi-bin/favorites override the global defaults.

Embedded Web Security through Application-Layer Firewalls 9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

re
sp

o
n
se

 t
im

e
 C

D
F

response time (ms)

Web Server Latency CDF

with Umbra
without Umbra

Figure 3. Server Response Time—This graph shows the response time of the web
server with and without Umbra; the average overhead is about 5ms (3%).

3.3 Implementation

We implemented our Umbra prototype for Linux, which is a popular platform for
Internet-attached embedded devices. To provide high-performance non-blocking
sockets, we use Linux’s epoll(7) interface [20]. Since the shim needs to run within
the footprint of embedded systems, we wrote it in C. We considered memory-
safe languages such as Python and Go, but Python is not usually installed on
embedded devices and requires a large runtime. While the Go compiler generates
machine binaries, the Go runtime library is statically linked, leading to binaries
that are prohibitively large.

The shim minimizes use of external libraries, only using an HTTP parsing
library [30]. It also optionally links against OpenSSL to provide HTTPS sup-
port [44]. The complete Umbra implementation, including the shim and the
policy interpreter, is 5676 lines of C and 631 lines of Python. When compiled as
an ARM binary, the shim executable is 75 KB.

4 Evaluation

4.1 Performance

To measure the performance of Umbra, we used the Apache Benchmark tool,
which records the time taken for an HTTP server to respond to requests [1].
We ran our benchmark on a Raspberry Pi Model B running OpenWrt Barrier
Breaker 14.07. The requests were made from a laptop that was connected directly

10 Finkenauer and Halderman

Vulnerability Protection Level Total
None Partial Full Unknown

Bypass 1 0 4 0 5
Command injection 0 0 2 0 2
CSRF 0 0 5 1 6
Directory traversal 0 0 1 0 1
Denial of service 3 1 1 1 6
Information leak 1 0 3 0 4
Memory corruption 2 0 1 0 3
Other 0 0 0 1 1
SQL injection 0 0 0 1 1
XSS 2 3 3 3 11

Protect Totals 9 4 20 7 40

Table 2. Evaluating Vulnerability Protection—We rate the level of protection
Umbra would have provided against a sample of real-world vulnerabilities.

via a 100Mbps Ethernet cable. We made 1000 requests to the web interface both
with and without the Umbra shim.

The results of this benchmark are shown in Figure 3. Umbra, on average,
added only about 5ms of overhead, or about 3%. We configured Umbra to check
header length, HTTP request method, directory traversal, and authentication. We
had Apache Benchmark send the correct HTTP Basic Authentication credentials.

Umbra comfortably ran within the Raspberry Pi’s footprint. The shim com-
piled to a 75 KB dynamically linked ARM binary. In comparison, the BusyBox
binary in the firmware image is 370 KB. The OpenWrt firmware image itself is
40 MB, with 33 MB available, so the executable can easily fit within the firmware
image. During the benchmark, the Raspberry Pi reported 2–3% CPU utilization
and peaked at a virtual memory size of 1.2 MB.

4.2 Security

In order to estimate the security provided by Umbra, we surveyed vulnerabilities
that were assigned Common Vulnerability and Exposure (CVE) identifiers since
2012 from eight embedded device manufacturers: Brother, Cannon, Cisco, D-Link,
Linksys, Lorex, Netgear, Supermicro, TP-LINK, Trendnet, and Xerox. There
were 284 vulnerabilities across all these vendors. We randomly selected 100 of
them and classified each based on the information in the public CVE database
and public exploit code [40].

For each vulnerability, we first determined whether the vulnerability was
for an embedded web server. We found that 40 of the 100 vulnerabilities were
related to embedded web interfaces. For each embedded web interface related
vulnerability, we manually determined: the class of vulnerability, the Umbra
feature that would mitigate or prevent the vulnerability (if any), and the level
of protection provided by Umbra. We determined the level of protection based

Embedded Web Security through Application-Layer Firewalls 11

Vulnerability Security Feature Total

Auth CSRF Dir.
Traver.

Header
Length
Check

Param.
White.

Param.
Length

Bypass 4 0 0 0 0 0 4
Command injection 0 0 0 0 2 0 2
CSRF 0 5 0 0 0 0 5
Directory traversal 0 0 1 0 0 0 1
Denial of service 0 0 0 1 0 0 1
Information leak 2 1 0 0 0 0 3
Memory corruption 0 0 0 0 0 1 1
Other 0 0 0 0 0 0 0
SQL injection 0 0 0 0 0 0 0
XSS 0 0 0 0 3 0 3

Feature Totals 6 6 1 1 5 1 20

Table 3. Security Feature Applicability—We show how many times each Umbra
security feature prevented different types of vulnerabilities in our sample.

on whether or not there exists an Umbra configuration that would prevent the
vulnerability without breaking functionality. We classified the level of protection
as either none (would provide no protection), partial (would prevent some parts
of the vulnerability or make it more difficult to exploit), full (would completely
eliminate the vulnerability), or unknown (there was not enough public information
to determine whether Umbra could have prevented the vulnerability).

A summary of the types of vulnerabilities and the amount of protection
provided by Umbra is shown in Table 2. At least half of the surveyed vulnerabilities
would have been prevented by Umbra. Umbra would fully prevent 4 of the 5
authentication bypass vulnerabilities, 5 of the 6 CSRF vulnerabilities, and 3 of
the 4 information leak vulnerabilities. This indicates that Umbra is an effective
tool for mitigating these common classes of vulnerabilities.

Umbra would have worked less well for defending against denial of service
and XSS vulnerabilities. Umbra only prevented 1 of the 6 denial of service vul-
nerabilities and 3 of the 11 XSS vulnerabilities in our sample. XSS vulnerabilities
are difficult to prevent using a “pass-through” system like Umbra, because the
system does not have context for the data—only the information provided in
the security policy. Umbra’s main defense against XSS vulnerabilities is the
parameter character whitelist, where the attacker is limited by which characters
may be passed through HTTP parameters. This may be enough to stop some
XSS attacks but not all. For example, with an improperly escaped parameter
that allows quotes, an attacker could close an HTML attribute and create a new
attribute corresponding to a JavaScript callback. In other instances, XSS may be
done through alternative vectors. For example, in CVE-2014-4645, an attacker
could inject arbitrary HTML or JavaScript by altering the attacker machine’s

12 Finkenauer and Halderman

hostname [39]. In some of these cases, the developer must properly escape the
data in the web application to prevent the vulnerability.

The Umbra security features that would have prevented each of the sampled
vulnerabilities are shown in Table 3. The authentication, CSRF prevention, and
parameter whitelist features provided the largest security impact, accounting for
17 of the 20 vulnerabilities that would have been prevented by Umbra.

5 Future Work

In future work, we plan to investigate applying similar techniques to protect
other management protocols commonly used in embedded devices, such as IPMI
and SNMP. Both of these protocols are common in larger networks and provide
a well-known attack surface [38,41].

Future versions of Umbra might consider other implementation languages that
offer better memory safety. One potential candidate is Rust, a systems-oriented
language that provides memory safety and protection against other security
bugs [51]. When we wrote the original version of Umbra, the Rust language was
not yet stable, but there has since been a stable release [52].

An alternative to adopting a safer language would be to apply formal verifica-
tion to the shim C code. Recent efforts have produced formally verified versions
of an optimizing C compiler [35] and an operating system kernel with 8700 lines
of C code [32], so verifying the 5617-line Umbra shim should be tractable.

One downside to Umbra is that the developer needs to define the security
policy manually. Instead, the system could be extended to infer a security
policy from examples of valid inputs during a “training” period, as is done by
security modules such as AppArmor [2] and Grsecurity [54]. This would simplify
integrating Umbra with existing devices and increase the likelihood of adoption.

Although Umbra mitigates several significant classes of vulnerabilities affecting
embedded web interfaces, one common problem that it does not yet address
is flawed TLS implementations. Embedded devices often do not use HTTPS,
implement it incorrectly, or use self-signed or default TLS certificates [24]. Umbra
could be extended to upgrade all connections to HTTPS and to automatically
request a browser-trusted certificate from a robotic CA such as Let’s Encrypt [28].

Lastly, to spur Umbra adoption and improve the security of embedded devices
generally, we hope to work with embedded vendors to help them integrate Umbra
into their products. If several manufacturers integrate Umbra, there will be
competitive pressure for other vendors to adopt similar security mechanisms.

6 Conclusion

Web interfaces in embedded devices are a common source of security vulnerabili-
ties. We have shown that Umbra, a light-weight application-layer firewall, can
prevent about half of known vulnerabilities in embedded web interfaces while
adding negligible run-time overhead. Unlike existing application-layer firewalls,

Embedded Web Security through Application-Layer Firewalls 13

Umbra can run comfortably in the constrained memory and CPU footprint of
an embedded device. Embedded systems present many security challenges, but
Umbra offers a promising approach to helping them achieve defense-in-depth.

Acknowledgments

This material is based upon work supported by a gift from Super Micro Computer,
Inc. We would particularly like to thank Arun Kalluri, Joe Tai, Linda Wu, Mars
Yang, Tau Leng, and Charles Liang from Supermicro. Additional support was
provided by the National Science Foundation under grants CNS-1345254, CNS-
1409505, and CNS-1518888.

References

1. Apache Software Foundation: ab—Apache HTTP server benchmarking tool (Apr
2015), http://httpd.apache.org/docs/2.4/programs/ab.html

2. AppArmor Security Project: Getting Started (Sep 2011), http://wiki.apparmor.net/
index.php/GettingStarted

3. Barracuda Networks: Barracuda web application firewall (2015), https://www.
barracuda.com/products/webapplicationfirewall

4. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery.
In: 15th ACM Conference on Computer and Communications Security. pp. 75–88.
CCS (2008)

5. Bigg, R., et al.: Ruby on Rails security guide (2015), http://guides.rubyonrails.org/
security.html

6. Bonkoski, A., Bielawski, R., Halderman, J.A.: Illuminating the security issues
surrounding lights-out server management. In: 7th USENIX Workshop on Offensive
Technologies. WOOT (2013)

7. Bosman, E., Slowinska, A., Bos, H.: Minemu: The world’s fastest taint tracker. In:
14th Int’l Conf. on Recent Advances in Intrusion Detection. RAID (2011)

8. Certec EDV: Atvise SCADA (2014), http://www.atvise.com/en/products-solutions/
atvise-scada

9. Check Point: Misfortune cookie (Dec 2014), http://blog.checkpoint.com/2014/12/
18/misfortune-cookie-the-hole-in-your-internet-gateway-3/

10. Cisco Systems: Cisco ACE web application firewall (May 2008), http://
www.cisco.com/c/en/us/products/collateral/application-networking-services/
ace-web-application-firewall/data_sheet_c78-458627.html

11. Cisco Systems: Home network administration protocol (HNAP) whitepa-
per (Jan 2009), http://www.cisco.com/web/partners/downloads/guest/hnap_
protocol_whitepaper.pdf

12. Coen, T.: Bypass CSRF via XSS. Software talk (Mar 2015), http://software-talk.org/
blog/2015/03/bypass-csrf-via-xss/

13. Cowan, C., Pu, C., Maier, D., Hintony, H., Walpole, J., Bakke, P., Beattie, S.,
Grier, A., Wagle, P., Zhang, Q.: StackGuard: Automatic adaptive detection and
prevention of buffer-overflow attacks. In: 7th USENIX Security Symposium (1998)

14. D-Link: DIR-645: Rev. Ax—Command injection—Buffer overflow: FW 1.04b12
(Jan 2015), http://securityadvisories.dlink.com/security/publication.aspx?name=
SAP10051

http://httpd.apache.org/docs/2.4/programs/ab.html
http://wiki.apparmor.net/index.php/GettingStarted
http://wiki.apparmor.net/index.php/GettingStarted
https://www.barracuda.com/products/webapplicationfirewall
https://www.barracuda.com/products/webapplicationfirewall
http://guides.rubyonrails.org/security.html
http://guides.rubyonrails.org/security.html
http://www.atvise.com/en/products-solutions/atvise-scada
http://www.atvise.com/en/products-solutions/atvise-scada
http://blog.checkpoint.com/2014/12/18/misfortune-cookie-the-hole-in-your-internet-gateway-3/
http://blog.checkpoint.com/2014/12/18/misfortune-cookie-the-hole-in-your-internet-gateway-3/
http://www.cisco.com/c/en/us/products/collateral/application-networking-services/ace-web-application-firewall/data_sheet_c78-458627.html
http://www.cisco.com/c/en/us/products/collateral/application-networking-services/ace-web-application-firewall/data_sheet_c78-458627.html
http://www.cisco.com/c/en/us/products/collateral/application-networking-services/ace-web-application-firewall/data_sheet_c78-458627.html
http://www.cisco.com/web/partners/downloads/guest/hnap_protocol_whitepaper.pdf
http://www.cisco.com/web/partners/downloads/guest/hnap_protocol_whitepaper.pdf
http://software-talk.org/blog/2015/03/bypass-csrf-via-xss/
http://software-talk.org/blog/2015/03/bypass-csrf-via-xss/
http://securityadvisories.dlink.com/security/publication.aspx?name=SAP10051
http://securityadvisories.dlink.com/security/publication.aspx?name=SAP10051

14 Finkenauer and Halderman

15. Davi, L., Sadeghi, A.R., Winandy, M.: ROPdefender: A detection tool to defend
against return-oriented programming attacks. In: 6th ACM Symposium on Infor-
mation, Computer, and Communications Security. pp. 40–51. ASIACCS (2011)

16. DD-WRT Wiki: Web interface (Jul 2012), http://www.dd-wrt.com/wiki/index.php/
Web_Interface

17. Django Software Foundation: Cross site request forgery protection (2015), https://
docs.djangoproject.com/en/1.8/ref/csrf/

18. Doyle, J.: Lorex IP camera authentication bypass (CVE-2012-6451) (Dec 2012),
https://www.fishnetsecurity.com/6labs/blog/lorex-ip-camera-authentication-
bypass-cve-2012-6451

19. Durumeric, Z., Wustrow, E., Halderman, J.A.: ZMap: Fast Internet-wide scanning
and its security applications. In: 22nd USENIX Security Symposium (2013)

20. epoll(7): process trace. Linux Programmer’s Manual
21. Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A.,

Stewart, L.: HTTP authentication: Basic and digest access authentication. RFC
2617 (Draft Standard) (Jun 1999), http://www.ietf.org/rfc/rfc2617.txt, updated
by RFC 7235

22. Fu, K., Blum, J.: Inside risks: Controlling for cybersecurity risks of medical device
software. Communications of the ACM 56(10), 21–23 (Oct 2013)

23. Ghena, B., Beyer, W., Hillaker, A., Pevarnek, J., Halderman, J.A.: Green lights
forever: Analyzing the security of traffic infrastructure. In: 8th USENIX Workshop
on Offensive Technologies. WOOT (2014)

24. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps and Qs:
Detection of widespread weak keys in network devices. In: 21st USENIX Security
Symposium (Aug 2012)

25. Hewlett-Packard: HP Jetdirect print servers—Using Telnet to configure the HP Jet-
direct print server, http://h20564.www2.hp.com/hpsc/doc/public/display?docId=
emr_na-bpj05732

26. Hewlett-Packard: HP embedded web server user guide (Aug 2007), http://h20628.
www2.hp.com/km-ext/kmcsdirect/emr_na-c01151842-2.pdf

27. Hewlett-Packard: TippingPoint next-generation firewall (NGFW) technical specifica-
tions (2015), http://www8.hp.com/us/en/software-solutions/ngfw-next-generation-
firewall/tech-specs.html

28. Internet Security Research Group: Let’s Encrypt (2015), https://letsencrypt.org/
29. Jones, N.: Exploiting embedded devices (Jun 2012), http://pen-testing.sans.org/

resources/papers/gpen/exploiting-embedded-devices-129676
30. Joyent: HTTP parser (Apr 2015), https://github.com/joyent/http-parser
31. Ketkar, C.: Standard versus proprietary security protocols. Justice League Blog

(May 2014), http://www.cigital.com/justice-league-blog/2014/05/28/standard-
versus-proprietary-security-protocols/

32. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe,
D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.:
seL4: Formal verification of an OS kernel. In: 22nd Symposium on Operating
Systems Principles. pp. 207–220. SOSP (Oct 2009)

33. Kneschke, J.: Lighttpd: Fly light (Mar 2014), http://www.lighttpd.net/
34. Lafon, Y., Mendelsohn, N., Karmarkar, A., Nielsen, H.F., Hadley, M., Gudgin,

M., Moreau, J.J.: SOAP version 1.2 part 2: Adjuncts (second edition). W3C
recommendation (Apr 2007), http://www.w3.org/TR/soap12-part2/

35. Leroy, X., Blazy, S., Dargaye, Z., Jourdan, J.H., Tristan, J.B.: CompCert (Jun
2015), http://compcert.inria.fr/

http://www.dd-wrt.com/wiki/index.php/Web_Interface
http://www.dd-wrt.com/wiki/index.php/Web_Interface
https://docs.djangoproject.com/en/1.8/ref/csrf/
https://docs.djangoproject.com/en/1.8/ref/csrf/
https://www.fishnetsecurity.com/6labs/blog/lorex-ip-camera-authentication-bypass-cve-2012-6451
https://www.fishnetsecurity.com/6labs/blog/lorex-ip-camera-authentication-bypass-cve-2012-6451
http://www.ietf.org/rfc/rfc2617.txt
http://h20564.www2.hp.com/hpsc/doc/public/display?docId=emr_na-bpj05732
http://h20564.www2.hp.com/hpsc/doc/public/display?docId=emr_na-bpj05732
http://h20628.www2.hp.com/km-ext/kmcsdirect/emr_na-c01151842-2.pdf
http://h20628.www2.hp.com/km-ext/kmcsdirect/emr_na-c01151842-2.pdf
http://www8.hp.com/us/en/software-solutions/ngfw-next-generation-firewall/tech-specs.html
http://www8.hp.com/us/en/software-solutions/ngfw-next-generation-firewall/tech-specs.html
https://letsencrypt.org/
http://pen-testing.sans.org/resources/papers/gpen/exploiting-embedded-devices-129676
http://pen-testing.sans.org/resources/papers/gpen/exploiting-embedded-devices-129676
https://github.com/joyent/http-parser
http://www.cigital.com/justice-league-blog/2014/05/28/standard-versus-proprietary-security-protocols/
http://www.cigital.com/justice-league-blog/2014/05/28/standard-versus-proprietary-security-protocols/
http://www.lighttpd.net/
http://www.w3.org/TR/soap12-part2/
http://compcert.inria.fr/

Embedded Web Security through Application-Layer Firewalls 15

36. Lewis, D.: Security and the Internet of Things. Forbes (Sep 2014), http://www.
forbes.com/sites/davelewis/2014/09/16/security-and-the-internet-of-things/

37. Linksys: GPL code center (2014), http://support.linksys.com/en-us/gplcodecenter
38. Medin, T.: Invasion of the network snatchers: Part I. SANS Penetration Testing

(May 2013), http://pen-testing.sans.org/blog/2013/05/31/invasion-of-the-network-
snatchers-part-i

39. MITRE Corporation: CVE-2014-4645 (Jun 2014), http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-4645

40. MITRE Corporation: Common vulnerabilities and exposures (Apr 2015), https://
cve.mitre.org/

41. Moore, H.D.: Penetration tester’s guide to IPMI and BMCs. Rapid7Community
(Jul 2013), https://community.rapid7.com/community/metasploit/blog/2013/07/
02/a-penetration-testers-guide-to-ipmi

42. Nachreiner, C.: H.D. Moore unveils major UPnP security vulnerabilities. Watch-
Guard Security Center (Jan 2013), http://watchguardsecuritycenter.com/2013/01/
31/h-d-moore-unveils-major-upnp-security-vulnerabilities/

43. Open Crypto Audit Project: Welcome to the Open Crypto Audit Project (Jun
2014), https://opencryptoaudit.org/

44. OpenSSL Project: Welcome to the OpenSSL project (2015), https://www.openssl.
org/

45. OpenWRT Project: Web server configuration uHTTPd (2014), http://wiki.openwrt.
org/doc/uci/uhttpd

46. Orchard, D., McCabe, F., Newcomer, E., Haas, H., Ferris, C., Booth, D., Champion,
M.: Web services architecture. W3C note (Feb 2004), http://www.w3.org/TR/
2004/NOTE-ws-arch-20040211/

47. PCI Security Standards Council: Payment Card Industry (PCI) data security
standard requirements and security assessment procedures version 3.1 (Apr 2015),
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-1.pdf

48. Rectanus, B.: IronBee reference manual (2014), https://www.ironbee.com/docs/
manual/

49. Rocha, M., Riva, N., Falcon, F., Santamaria, P.: D-Link IP cameras multiple vul-
nerabilities (Apr 2013), http://www.coresecurity.com/advisories/d-link-ip-cameras-
multiple-vulnerabilities

50. Rosenblatt, S.: Car hacking code released at Defcon. CNET (Aug 2013),
http://www.cnet.com/news/car-hacking-code-released-at-defcon/

51. Rust Core Team: The Rust programming language, http://www.rust-lang.org/
52. Rust Core Team: Announcing Rust 1.0. Rust Programming Language Blog (May

2015), http://blog.rust-lang.org/2015/05/15/Rust-1.0.html
53. Siemens: WinCC/Web navigator: Operator control and monitoring via the

web, http://w3.siemens.com/mcms/human-machine-interface/en/visualization-
software/scada/wincc-options/wincc-web-navigator/pages/default.aspx

54. Spengler, B.: Grsecurity ACL documentation v1.5 (Apr 2003), https://grsecurity.
net/gracldoc.htm

55. Supermicro: Supermicro intelligent management (2015), http://www.supermicro.
com/products/nfo/IPMI.cfm

56. Trustwave SpiderLabs: ModSecurity: Open source web application firewall (2015),
https://www.modsecurity.org/

57. Wagle, P., Cowan, C.: StackGuard: Simple stack smash protection for GCC. In:
GCC Developers Summit. pp. 243–255 (May 2003)

All links were last followed on Jun 1, 2015.

http://www.forbes.com/sites/davelewis/2014/09/16/security-and-the-internet-of-things/
http://www.forbes.com/sites/davelewis/2014/09/16/security-and-the-internet-of-things/
http://support.linksys.com/en-us/gplcodecenter
http://pen-testing.sans.org/blog/2013/05/31/invasion-of-the-network-snatchers-part-i
http://pen-testing.sans.org/blog/2013/05/31/invasion-of-the-network-snatchers-part-i
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4645
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4645
https://cve.mitre.org/
https://cve.mitre.org/
https://community.rapid7.com/community/metasploit/blog/2013/07/02/a-penetration-testers-guide-to-ipmi
https://community.rapid7.com/community/metasploit/blog/2013/07/02/a-penetration-testers-guide-to-ipmi
http://watchguardsecuritycenter.com/2013/01/31/h-d-moore-unveils-major-upnp-security-vulnerabilities/
http://watchguardsecuritycenter.com/2013/01/31/h-d-moore-unveils-major-upnp-security-vulnerabilities/
https://opencryptoaudit.org/
https://www.openssl.org/
https://www.openssl.org/
http://wiki.openwrt.org/doc/uci/uhttpd
http://wiki.openwrt.org/doc/uci/uhttpd
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-1.pdf
https://www.ironbee.com/docs/manual/
https://www.ironbee.com/docs/manual/
http://www.coresecurity.com/advisories/d-link-ip-cameras-multiple-vulnerabilities
http://www.coresecurity.com/advisories/d-link-ip-cameras-multiple-vulnerabilities
http://www.rust-lang.org/
http://blog.rust-lang.org/2015/05/15/Rust-1.0.html
http://w3.siemens.com/mcms/human-machine-interface/en/visualization-software/scada/wincc-options/wincc-web-navigator/pages/default.aspx
http://w3.siemens.com/mcms/human-machine-interface/en/visualization-software/scada/wincc-options/wincc-web-navigator/pages/default.aspx
https://grsecurity.net/gracldoc.htm
https://grsecurity.net/gracldoc.htm
http://www.supermicro.com/products/nfo/IPMI.cfm
http://www.supermicro.com/products/nfo/IPMI.cfm
https://www.modsecurity.org/

	Umbra: Embedded Web Security through Application-Layer Firewalls

