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Abstract

Researchers at the University of Washington recently pro-
posed Vanish [20], a system for creating messages that au-
tomatically “self-destruct” after a period of time. Vanish
works by encrypting each message with a random key and
storing shares of the key in a large, public distributed hash
table (DHT). DHTs expunge data older than a certain age;
after this happens to the key shares, the key is permanently
lost, and the encrypted data is permanently unreadable. Van-
ish is an interesting approach to an important privacy prob-
lem, but, in its current form, it is insecure. In this paper,
we defeat the deployed Vanish implementation, explain how
the original paper’s security analysis is flawed, and draw
lessons for future system designs.

We present two Sybil attacks against the current Van-
ish implementation, which stores its encryption keys in the
million-node Vuze BitTorrent DHT. These attacks work by
continuously crawling the DHT and saving each stored value
before it ages out. They can efficiently recover keys for more
than 99% of Vanish messages. We show that the dominant
cost of these attacks is network data transfer, not memory us-
age as the Vanish authors expected, and that the total cost is
two orders of magnitude less than they estimated. While we
consider potential defenses, we conclude that public DHTs
like Vuze probably cannot provide strong security for Vanish.

† Both authors contributed equally.

1. Introduction

As storage capacities increase and applications move into
the cloud, controlling the lifetime of sensitive data is becom-
ing increasingly difficult. Even if users cleanse their local
files, copies may be retained long into the future by email
providers, backup systems, and other services, and these
may be targets of theft or subpoena. Geambasu, Kohno,
Levy, and Levy proposed the Vanish system [20] to address
this problem. Vanish encapsulates data objects so that they
“self-destruct” after a specified time, becoming permanently
unreadable. It encrypts the data using a randomly generated
key and then uses Shamir secret sharing [38] to break the
key into n shares of which k are needed to reconstruct the
key. Vanish stores these shares in random indices in a large,
pre-existing distributed hash table (DHT), a kind of peer-to-
peer network that holds key-value pairs. The encrypted data
object together with the list of random indices comprise a
“Vanishing Data Object” (VDO).

DHTs have a property that seemingly makes them ideal
for this application: they make room for new data by discard-
ing older data after a set time. The DHT policy to age out
data is what makes Vanish data vanish. A user in possession
of a VDO can retrieve the plaintext prior to the expiration
time T by simply reading the secret shares from at least k
indices in the DHT and reconstructing the decryption key.
When the expiration time passes, the DHT will expunge the
stored shares, and, the Vanish authors assert, the informa-
tion needed to reconstruct the key will be permanently lost.
The Vanish team released an implementation based on the
million-node Vuze DHT, which is used mainly for BitTorrent
tracking.
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Vanish is an intriguing approach to an important prob-
lem1; unfortunately, in its present form, it is insecure. In this
paper, we show that data stored using the deployed Vanish
system can be recovered long after it is supposed to have
been destroyed, that such attacks can be carried out inex-
pensively, and that alternative approaches to building Vanish
are unlikely to be much safer. We also examine what was
wrong with the Vanish paper’s security analysis, which an-
ticipated attacks like ours but concluded that they would be
prohibitively expensive, and draw lessons for the design of
future systems.

Attacks Vanish’s security depends on the assumption that
an attacker cannot efficiently extract VDO key shares from
the DHT before they expire. Suppose an adversary could
continuously crawl the DHT and record a copy of everything
that gets stored. Later, if he wished to decrypt a Vanish
message, he could simply look up the key shares in his
logs. Such an attacker might even run a commercial service,
offering to provide the keys for any Vanish message for a
fee. Thus, a method of efficiently crawling the DHT enables
a major attack against Vanish.

The authors of this paper represent two groups of re-
searchers who simultaneously and independently developed
such attacks. (The Michigan and Princeton authors are one
group; the Texas authors are the other.) After discovering
that we had separately achieved similar results, we decided
to write a joint paper. We show that we can extract the con-
tents of the Vuze DHT using low-cost Sybil attacks.2 Vuze
DHT clients periodically replicate the data they store to other
peers that are close-by in the system’s ID space. In our at-
tacks, we participate in the network with a large number of
identities and record the data that is replicated to them.

The size of the Vuze DHT makes Sybil attacks challeng-
ing, as there are typically around a million peers. We investi-
gated a strategy for making our attacks more efficient, which
we call “hopping”. Hopping significantly reduced the cost
of the attacks—as well as the load they placed on the DHT—
while enabling us to record enough of the DHT’s contents to
enable near-complete VDO recovery. Additional optimiza-
tions in our implementations brought further savings in CPU,
memory, storage, and bandwidth consumption.

The Vanish authors explicitly considered Sybil attacks
against the DHT and estimated the cost to be around $860K
per year. In contrast, our most efficient attack would cost
only $5900 per year to operate at a level that would recover
99% of VDOs. (Both figures are based on Amazon EC2
pricing [2].) Our optimizations drastically reduce the cost

1Vanish won Outstanding Student Paper at USENIX Security 2009.
2In a Sybil attack [16], a single entity assumes many identities within

a peer-to-peer network in order to gain control over a large fraction of the
system.

of crawling the Vuze DHT, illustrating that it is possible to
defeat Vanish without extraordinary financial resources.

Analysis One of the goals of security research is to learn
how to build secure systems. It is instructive to study why
systems fail, particularly when those systems set out to pro-
vide well-defined security properties. To this end, we ask
why Vanish failed and draw a number of lessons for future
systems.

We begin by examining the security analysis contained
in the Vanish paper and pointing out several shortcomings.
The authors dramatically overestimated the cost of running
Sybils, failed to anticipate the efficiency gains from opti-
mized attack strategies, and did not notice that recovery
scales with coverage in a way that favors attackers. These
errors caused the Vanish analysis to overestimate the cost of
a successful attack by more than two orders of magnitude.

The Vanish paper also overlooked previous work that
might have made Sybil attacks seem like a more credible
threat. Similar approaches for crawling DHTs have been
applied to other Kademlia-family networks in several mea-
surement studies [30, 40]. The Vanish authors apparently
were unaware of these studies, which we survey in Section 7.

There are a number of possible defenses that could be
applied to future versions of Vanish and Vuze, including
reducing replication, imposing further restrictions on node
IDs, and employing client puzzles. Changes like these might
make Sybil attacks more expensive, but probably not by a
large enough factor to provide strong security for Vanish.
Another approach would be to switch from a public DHT,
where anyone can serve as a peer, to a privately run system
like OpenDHT [37]. Though this would remove the threat
from Sybils, the private system would essentially act as a
trusted third party, which Vanish was designed to avoid.

Vanish’s weaknesses are not only of academic concern.
Since the Vanish prototype was released to the public amidst
widespread media coverage [27], users may already be treat-
ing it as a production system and entrusting it with sensitive
data. One might believe that this cannot make matters any
worse—the system provides an additional layer of protec-
tion, which, if compromised, is no worse than what the user
had in place originally. This argument assumes that users’
behavior will not be affected by the perceived benefits that
Vanish delivers, which seems to us unlikely. For example,
a user might not feel compelled to delete an email if he be-
lieves that the Vanish system has expired the contents. Or a
user might be less scrupulous in the contents she adds, if she
thinks the contents will vanish in a few hours. “Why bother
to prune my own data,” the user may ask, “if Vanish is doing
it for me?”

Vanish, as it is deployed today, does not meet its goal
of providing self-destructing data. While Vanish’s general
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approach may yet turn out to be viable, our results suggest
that implementing Vanish securely remains an open problem.

Organization The remainder of this paper is structured as
follows. Section 2 provides further background about Van-
ish and the Vuze DHT. Section 3 describes our attacks and
Section 4 evaluates their performance. We analyze problems
with the Vanish design and the Vanish paper’s security analy-
sis in Section 5. We consider possible defenses in Section 6,
survey related work in Section 7, and conclude in Section 8.

2. Background

This section provides a technical overview of the Vanish
system and the Vuze DHT. We refer the reader to the Vanish
paper [20] and the Vuze web site [45] for additional details.

2.1. Vanish

The television show Mission: Impossible famously began
with Jim Phelps receiving instructions from a recording that
subsequently self-destructs. Messages that self-destruct at
a predetermined time would be useful in a digital context
too—especially where privacy is important—though a self-
destruction feature is challenging to provide.

For example, the sender of an email might want the con-
tents discarded after the message is read. Even in circum-
stances where the receiver is agreeable to the sender’s wishes,
she may be unmotivated to put extra effort toward seeing
that those wishes are carried out. We call this model of user
behavior trustworthy, but lazy.

It has long been known that data retention can be man-
aged by encrypting data and then controlling the lifetime of
the decryption key, such as by scheduling the automatic dele-
tion of the key after a predetermined interval [6]. Geambasu,
Kohno, Levy, and Levy extend this idea in the Vanish sys-
tem [20] by employing an intriguing new technique to expire
keys. Vanish stores keys in a distributed hash table (DHT).
DHTs erase old data after a period of time to make room for
new stores. Vanish exploits this property to ensure that its
keys will expire at a predictable time with no intervention
from the user.

Vanish uses two principal mechanisms. The first is an
encapsulate algorithm that takes a data object D as input
and produces a Vanishing Data Object (VDO) as output. The
second is a decapsulate algorithm that accepts as input a
VDO and reproduces the original data, with the caveat that
decapsulation must be done within a certain time T of the
VDO’s creation.

Encapsulate The encapsulation algorithm takes as in-
put data D. The algorithm generates a random
secret key K, and then encrypts the data D under

the key K to yield ciphertext C. Next, the algo-
rithm uses Shamir secret sharing [38] to split the
key K into n shares K1, . . . ,Kn where k shares
are required to reconstruct the key. Shamir secret
sharing guarantees that k shares of K1, . . . ,Kn

are sufficient to reconstruct K, but no information
about the original key K can be recovered with
fewer than k shares.

Next, the algorithm chooses a random “access key”
L, which is used as a seed to a pseudorandom
number generator (PRNG). The algorithm runs the
PRNG to derive n indices Ii, . . . , In. For j =
1, . . . , n it stores key share Kj at index Ij in the
DHT. Finally, the VDO V is outputted as the tuple
V = (C,L).

Decapsulate The decapsulation algorithm accepts a
VDO V = (C,L) as input. The algorithm seeds
the PRNG with the access key L to retrieve n in-
dices I1, . . . , In. It then retrieves the data values
from the DHT at these indices. If fewer than k
values are retrieved, the algorithm outputs fail-
ure. Otherwise, it uses Shamir secret sharing on k
shares to reconstruct a key K ′. Finally, it attempts
decryption of C using K ′. The algorithm outputs
a failure if the decryption is not successful; other-
wise, it returns D, the result of the decryption.

Security model and assumptions The goal of Vanish is
to provide a type of forward security, where past objects
are secure if the VDO is compromised after its expiration
time. This is somewhat similar to forward secure signa-
tures [5, 23] and forward secure encryption [8]. However, in
these systems, a user’s machine is responsible for evolving
(updating) a private key. In Vanish, the goal is to achieve
security without requiring active deletion of the VDO from
the user’s machine. Instead, the system relies on the DHT
data retention policy to expire the shares of the key used to
encrypt the VDO.

Consider a user that creates a VDO V with expiration
time T . If Vanish is secure then any attacker obtaining the
VDO at time T + t, t > 0 will not be able to reconstruct
the data. Providing this guarantee of security requires at
least two assumptions about the attacker. (We note that if
we require correctness we also must assume availability of
the DHT before the timeout.) These assumptions are:

Limited Network View The attacker must not be able
to view the user’s traffic to the DHT. Otherwise, the
attacker could simply sniff and record the shares
as they are stored.

Limited View of DHT The attacker must not be able
to read more than a small fraction of the data stored
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on the DHT. Otherwise, the attacker could build
an archive of the DHT and later look up the key
shares.

Our work focuses on violating the second assumption.

Deployed implementation Vanish version 0.1 was re-
leased in August 2009. It consists of two components: a core
system, which provides the encapsulation and decapsulation
functions, and a Firefox web browser extension. The Firefox
extension allows the user to right-click on a selected area
of text to encapsulate it into a Vanishing Data Object. A
user can then right-click on the VDO to have the extension
retrieve the original text.

By default, the Firefox extension breaks the encryption
key into n = 10 shares with a recovery threshold of k = 7.
However, the Vanish paper recommends a slower but more
secure setting of n = 50 and k = 45. The Vuze DHT expires
stored data after T = 8 hours. Users can extend this time by
periodically reposting their key shares.

2.2. Vuze DHT

The current Vanish implementation stores keys in the
Vuze DHT, which is used by the Vuze BitTorrent client (also
known as Azureus) for decentralized torrent tracking. Vuze
estimates that the DHT contains over a million nodes, though
there is significant diurnal variation. The DHT is based on
a modified Kademlia [29] implementation and functions
similarly to many other DHTs. Nodes in the network and
keys in the hash table are assigned 160-bit identifiers (IDs).
Each DHT node stores those keys which are closest to it in
the ID space, as determined by the XOR distance metric.
Each Vuze client maintains a routing table that categorizes
peers into a number of “k-buckets” by their distance from
its own ID, where k is a parameter of the Kademlia design
and is set to 20 in Vuze.

All operations are performed using simple RPC com-
mands that are sent directly to the remote peer in a single
UDP packet. The primary Vuze RPCs are PING, which
checks node liveness and announces the sending node,
STORE, which stores a set of key value pairs at the receiving
node, FIND-NODE, which requests the 20 closest contacts
to a given ID that the receiver has in its routing table, and
FIND-VALUE, which functions like FIND-NODE except that
the receiver instead returns the values stored at the requested
key.

The fundamental Kademlia operation is node lookup,
which finds the 20 closest nodes to a given ID. To begin
a lookup, a node sends FIND-NODE requests to the 20 closest
nodes to the ID that it currently has in its routing table. Each
peer returns a list of the peers it knows that are closest to
the desired ID. The requesting node contacts those peers,

reaching successively closer peers until it finds those respon-
sible for storing the desired ID. A lookup terminates when
the closest known peer that has not yet been contacted is
farther from the desired ID than the farthest of the closest 20
responding peers.

To retrieve or store a value, the requesting node hashes
the key to obtain its ID and performs a lookup for the ID
to determine the 20 closest peers to the key. It then directly
contacts those peers with a request to return or store the
associated value.

A node joins the Vuze DHT by contacting a known peer
and initiating a lookup for its own ID. It uses this lookup to
build its list of peers and eventually finds the nodes closest
to its ID. When a node is contacted by a new peer with an ID
among the 20 closest to its own, it replicates all of its stored
keys to that node. To minimize unnecessary network traffic,
a node only replicates those keys to which it is the closest.
To deal with unreliable nodes, peers also replicate the data
periodically to the 20 closest nodes to the key’s ID.

The Vuze DHT employs a rudimentary anti-Sybil mech-
anism: node IDs are forced to equal the hash of the node’s
IP address and port number. This design accommodates the
common case of multiple users communicating via a single
NAT device by allowing the same IP to join the network at
different locations using different port numbers.

3. Attacking Vanish

One way to attack Vanish is with a large Sybil attack
against the underlying Vuze DHT. Vuze nodes replicate the
data they store to up to 20 neighboring nodes, so a straight-
forward attack would be to have many Sybils participate in
the network and wait for replication to occur.

Figure 1 shows the probability of recovering a VDO given
the probability of recovering any individual key share. We
model the probability of recovering an individual key share
as a binomial random variable with probability p. The prob-
ability of recovering the k/n VDO is then

Pr[recover VDO] =
n∑

i=k

(
n

i

)
pi(1− p)n−i

The Vanish authors approximated this as a linear function,
but that is a poor model of the actual behavior. The probabil-
ity of recovery exhibits a threshold phenomenon that works
to the attacker’s advantage.

This figure shows that, to achieve high VDO recovery
for the parameters suggested by the Vanish authors, the
attacker needs to have at least an 80% chance of learning
each stored share. Our experiments suggest that this would
require more than 60,000 Sybils. Although Vuze allows each
IP address the attacker owns to participate with up to 65,535
node IDs (one for each UDP port), the attacker may not have
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Figure 1. VDO recovery vs. key share recovery. The attacker’s chances of successfully decrypting
a VDO improve rapidly with the probability of recovering any given key share from the DHT. Here we
estimate the VDO recovery probability for three pairs of secret sharing parameters k/n.

sufficient computing resources to maintain so many Sybils
concurrently, and the necessary bandwidth might also be
prohibitively high.

The attacker can do much better by exploiting the fact
that he does not need continuous control over such a large
fraction of the network. Rather, he need only observe each
stored value briefly, at some point during its lifetime. Two
properties of Vuze’s replication strategy make this easy. First,
Vuze replicates values to new clients as soon as they join the
network. Second, to ensure resiliency as nodes rapidly join
and leave, Vuze nodes replicate the data they know to their
neighbors at frequent intervals, usually every 30 minutes.

Because of these behaviors, a Sybil node need not par-
ticipate in the network for very long in order to view the
majority of keys available at its position. If the attacker can
run m Sybils at a time, they can move, or “hop,” through
the range of available identities by changing their port or IP
address, thus gaining a chance to observe data stored at a
different set of locations. Hopping enables the attacker to
support mt

T effective Sybils during a given period of time t,
where T is the duration of each hop.

We found in our experiments that T = 3 minutes was
sufficient to observe almost all the information stored in the
vicinity of each ID. This means that, over the 8 hour VDO
lifetime, each Sybil can participate in the network from

160 node IDs with minimal loss in coverage. The hopping
strategy vastly increases the efficiency of our attacks.

3.1. Simple Implementation (Unvanish)

We constructed two implementations to experiment with
the hopping attack strategy. The first, Unvanish, demon-
strates the simplicity of constructing a Sybil attack against
Vanish. Unvanish is based on the publicly-available Vuze
DHT client code and adds just 268 lines3 of Java for creating
and operating the Sybils. An 82-line Python script instanti-
ates a number of Unvanish processes and controls the nodes’
hopping.

Unvanish records keys and values it receives from neigh-
boring nodes upon joining the network. To reduce the cost of
storage and transfer to the eventual permanent value archive,
Unvanish discards values whose lengths are outside the likely
range for shares of Vanish encryption keys. The length of a
key share is dependent on the key length, number of shares
n, and threshold k. Based on the Vanish implementation,
we calculate that shares of 128-bit encryption keys for the
default setting of k = 7, n = 10 and the recommended
“high-security” setting of k = 45, n = 50 will be 16 to 51

3All measures of lines of code are generated using David A. Wheeler’s
’SLOCCount’.
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bytes long, inclusive. Unvanish records all values within that
range.

We have been running Unvanish on the Amazon EC2
service, which provides a realistic assessment of the cost
of the attack. We run our Vuze DHT client on 10 “small”
EC2 instances, which provide 1.7 GB of physical memory,
160 GB of local storage, and compute power approximately
equivalent to a 1.0 GHz Xeon processor. Memory and pro-
cessor constraints restrict Unvanish to 50 concurrent DHT
nodes on each instance. Each DHT node hops to a new node
ID after every 150 seconds of operation.

We created an online demonstration of Unvanish that
decapsulates VDOs after they have supposedly expired. To
minimize the harm to Vanish users, we discard the data we
collect from the DHT after one week, though a real attacker
could easily keep it indefinitely.

3.2. Advanced Implementation (ClearView)

In order to investigate how the costs of the attack could be
reduced with further optimizations, we developed a second
implementation, which we call ClearView.

ClearView is a from-scratch reimplementation of the Vuze
DHT protocol written in 2036 lines of C. It uses an event-
driven design to minimize CPU and memory footprints, and
it can run many DHT clients in a single process. It can
maintain several thousand concurrent Sybils on a single
EC2 instance. On startup, ClearView bootstraps multiple
Vuze nodes in parallel, seeding the bootstrap process with
a list of peers gleaned ahead of time from a scan of the
network in order to avoid overloading the Vuze DHT root
node. ClearView then logs the content of each incoming
STORE request for later processing.

ClearView reduces the amount of network traffic used in
the attack by replying to incoming DHT commands only as
necessary to collect stored data. ClearView’s Sybils reply to
all PING and STORE requests in order to inform other nodes
that they are live. Vuze also requires that they respond to a
FIND-NODE request before they will receive any STORE re-
quests. Since the principal source of STOREs is replications
from nearby nodes, ClearView Sybils reply only to FIND-
NODE requests from nodes whose IDs share at least 8 prefix
bits with their IDs. ClearView omits the Vuze routing table
for efficiency and ease of implementation, so its FIND-NODE
replies contain only the contact information of the reply-
ing Sybil. ClearView unconditionally ignores FIND-VALUE,
KEY-BLOCK, and STATS requests, which are unnecessary for
crawling the DHT.

During preliminary experiments, we discovered that
Sybils remain in the Vuze routing tables for a significant
time after they shut down and that other Vuze peers continue
to attempt to contact them. Our hopping strategy causes
each Sybil to run for only a short time (3 minutes for our

ClearView experiments), so these latent requests amount
to substantial unwanted UDP traffic. The problem is com-
pounded by the default behavior of the Linux kernel, which
replies to each packet with an ICMP Destination Unreach-
able message. We found that these ICMP messages consti-
tuted a majority of ClearView’s outgoing traffic.

We achieved substantial cost savings by simply config-
uring the Linux firewall to block outgoing ICMP messages.
A more advanced implementation might be able to avoid
paying for the unwanted inbound traffic as well by using
EC2’s network firewall API [1] to allow traffic only to ports
used by the current set of Sybils.

4. Evaluation

This section measures the effectiveness of our two at-
tack implementations and quantifies the costs of running the
attacks on Amazon EC2.

4.1. Simple Hopping

We ran Unvanish on 10 “small” EC2 instances for ap-
proximately 24 hours. Over a 7.5-hour window during that
time, we seeded 104 VDOs into the DHT, using the default
security parameters of 7 of 10 shares required for decryption.
Each EC2 instance ran 50 concurrent Sybils which hopped
every 150 seconds, giving us data from 96,000 node IDs dur-
ing the 8-hour DHT store lifetime. Out of 1040 key shares,
we were able to recover 957, indicating that we achieved
about 92% coverage of key-value pairs. We successfully
decrypted 100% of the 104 VDOs using the data Unvanish
collected.

Running an EC2 “small” instance costs $0.10 per hour if
the instance is created on demand. Amazon also provides
reserved instance pricing, which entails an upfront charge
followed by a reduced per-hour usage charge. A one-year
reservation for 10 instances running full-time would cost
$0.56 per hour. During a one day run of Unvanish, our 10
EC2 instances transferred 176 GB of data in and 196 GB
out, and the average transfer cost was $2.12 per hour. Ex-
tending these figures, the cost for machines and transfer to
run Unvanish for a year would be $23,500. By contrast, the
original Vanish paper estimates that such an attack would
have an annual cost exceeding $860,000.

4.2. Advanced Hopping

To evaluate the effectiveness of ClearView, we ran trial
attacks against the Vuze network for around 8 hours at a time.
For two hours before the start of each experiment, we used
the deployed Vanish client to insert key shares into the DHT
from a distant network location. These served as targets for
our Sybils.
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Average per effective Sybil

Effective Sybils Target values Targets found Coverage (s) Bandwidth in (bin) / out (bout)

320,000 1650 99.4% 0.0030% 15.7 B/s 0.589 B/s
270,000 1700 99.5% 0.0032% 13.3 B/s 0.524 B/s
80,000 1650 91.8% 0.0036% 15.8 B/s 0.625 B/s

Table 1. ClearView experimental results. We conducted three trial attacks with our ClearView imple-
mentation. Over periods of around 8 hours, Sybils “hopped” to new node IDs every three minutes,
yielding 320k, 270k, and 80k effective Sybils. On average, each effective Sybil observed s = 0.0033%
of the DHT. Larger trials had slightly worse per-Sybil coverage, possibly due to network congestion.

We ran three trials with different numbers of effec-
tive Sybils, as summarized in Table 1. In all three trials,
ClearView ran on a number of “small” EC2 instances and
used a three minute hop time. The first trial used 10 EC2 in-
stances, each supporting 200 concurrent Sybils over 8 hours,
for a total of 320k effective Sybils; there were 1650 target
key shares, and we recovered 1640 of them (99.4%). The
second trial used 9 EC2 instances, each supporting 200 con-
current Sybils over 7.5 hours, for a total of 270k effective
Sybils; there were 1700 target key shares, and we recovered
1692 of them (99.5%). The third trial used 10 EC2 instances,
each supporting 50 concurrent Sybils over 8 hours, for a total
of 80k effective Sybils; there were 1650 target key shares,
and we recovered 1561 of them (91.8%).

These results allow us to estimate the fraction of DHT
values that could be observed with different numbers of effec-
tive Sybils. We calculate how many of the target values were
observed by different size subsets of our effective Sybils.
Figure 2 shows the results, based on data from the 270k trial.

As we explain below, we can accurately model the DHT
coverage we achieve using only a single parameter, s, the
fraction of the DHT observed by each effective Sybil. For
our 320k effective Sybil trial, each Sybil observed 0.050
target values on average, yielding average per-Sybil coverage
s = 0.000030. For our 270k effective Sybil trial, each Sybils
observed 0.055 target values on average, yielding average
per-Sybil coverage s = 0.000032. For the 80k effective Sybil
trial, each Sybils observed 0.059 target values on average,
yielding average per-Sybil coverage s = 0.000036.

An analytic model The shape of the curve plotting DHT
coverage can be explained using a simple combinatorial
model. If we make the approximation that each Sybil sees
some fraction of the network uniformly at random, then we
can use a random process to model the number of unique
objects seen by a collection of Sybils.

In this case, the process is equivalent to the balls-into-bins
problem. If each Sybil sees on average c objects from the
network and there are m Sybils, then the Sybils together will

have collected cm objects. However, once cm is no longer
small with respect to the total number of objects N in the
network, the Sybils will be very likely to collect repeats of
objects and it will be more difficult to discover new objects.
This process is equivalent to throwing cm balls into N bins
and asking how many bins contain at least one ball; that is,
how many objects were seen by at least one Sybil.

The analysis of this problem is standard; see, e.g. [31,
Ch. 5.3]. The expected fraction of DHT objects observed
by m Sybils is 1 − e−cm/N . Let s be the fraction of the
entire DHT observed by each Sybil, that is, s = c

N . We can
rewrite the expected fraction of DHT objects observed by an
m-Sybil attack in terms of this parameter:

E[DHT objects observed] = 1− e−ms.

Figure 2 illustrates this model’s close correspondence
with our experimental results. The model slightly overesti-
mates actual performance due to the simplifying assumption
that each Sybil observes an equal number of fragments.

We can use this model of DHT coverage, and the cal-
culation of VDO recovery in terms of key share recovery
from Figure 1, to estimate the fractions of VDOs that we
would recover with different size attacks. Figure 3 shows
the results using data from our 270k effective Sybil trial. For
the default Vanish secret sharing parameters of k = 7 and
n = 10, we would need 26k effective Sybils to recover 25%
of VDOs, 59k to recover 90%, and 89k to recover 99%. For
secret sharing parameters of k = 9 and n = 10, we would
need 48k effective Sybils to recover 25% of VDOs, 115k
to recover 90%, and 186k to recover 99%. For the Vanish
paper’s conservative secret sharing parameters of k = 45
and n = 50, we would need 70k effective Sybils to recover
25% of VDOs, 107k to recover 90%, and 136k to recover
99%.

Machine and network costs Based on these approxima-
tions and the costs of running our full experiment, we can
extrapolate the costs of longer attacks targeting various frac-
tions of VDOs. The dominant costs are those of machines
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and network transfer. Each effective Sybil needs a unique
IP address and port combination. An EC2 instance can only
use a single IP address, so the attacker needs one instance
for every 65535 effective Sybils. (ClearView easily support
this number on even a “small” instance.) Each instance costs
about $500/year with reserved pricing.

Network transfer is the dominant cost for most attack
parameter choices. We can estimate the transfer costs based
on the average bandwidth used by each Sybil. EC2 prices
inbound and outbound transfers differently, so we report
averages for both directions. During our 8-hour trial period
running 320k effective Sybils, ClearView transferred 145 GB
in and 5.5 GB out, for an average bandwidth per effective
Sybil of 15.7 B/s in and 0.589 B/s out. Our other trials
produced similar results, indicating that the network transfer
cost of running an attack for one year would be $52.80–
$54.80 per thousand effective Sybils.

Figure 4 estimates the cost of EC2 instances and transfer
for year-long attacks aiming to recover various fractions of
VDOs. For the default Vanish secret sharing parameters of
k = 7 and n = 10, recovering 25% of VDOs would cost
about $1950 per year, 90% would cost about $3750, and
99% would cost about $5900. For secret sharing parameters
of k = 9 and n = 10, recovering 25% of VDOs would

cost about $3150 per year, 90% would cost about $7350,
and 99% would cost about $11,950. For the Vanish paper’s
conservative secret sharing parameters of k = 45 and n = 50,
recovering 25% of VDOs would cost about $4850 per year,
recovering 90% would cost about $6900, and recovering
99% would cost about $9000.

Storage costs To carry out an ongoing attack, the adver-
sary needs to store the DHT values he collects. We attempted
to quantify the costs of this storage by measuring the data
collected by our Sybils.

Table 2 shows the average number of values and bytes
that were recorded by each Sybil during an 8-hour experi-
mental window. We omit STOREs for empty values, since
they represent key deletion in the DHT. Most of the values
are related to Vuze’s BitTorrent tracking functions. Bencod-
ing [12] is a simple serialization format that is part of the
BitTorrent protocol, and peer records are the human-readable
values inserted into the DHT to record the presence of peers
for DHT-tracked torrents.

To obtain 94% coverage, the attacker would have to run
128,000 effective Sybils over each 8-hour period. Recording
every key-value pair for a one-year period would require
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Category Values (per 8 Sybil-hours) Bytes (per 8 Sybil-hours)

Peer record 850 4000
Bencoded 330 31,000
Other 220 5000

Total 1400 40,000
Potential Vanish key share 95 1700

Table 2. Observed stored values. These figures represent the average number of values and bytes
observed by each Sybil during an 8-hour window, without removing duplicates. Currently, Vanish
key shares always occupy 16–51 bytes, so an attacker would only need to retain these values.

about 9.5 TB of storage and cost about $1400 (using Amazon
S3 pricing [3]).

As mentioned earlier, the attacker can greatly reduce the
cost by storing only values that are possible key shares in the
current Vanish implementation—those with lengths between
16 and 51 bytes, inclusive. We estimate that this would
amount to less than 510 GB per year and cost under $80.
Further savings could be achieved by discarding duplicate
stores, though this would require additional post processing.

5. Discussion

Researchers often discover vulnerabilities in systems pro-
posed by other researchers, and the process of learning from
these problems has produced fruitful advances. Examples in-
clude the development of the Tor anonymous communication
system [4, 15, 32–35] and Off-the-Record Messaging [7, 36].
In this section, we discuss problems in the Vanish design
and in the Vanish paper’s security analysis, and we attempt
to draw lessons for future systems.

5.1. Problems with the Vanish Security Analysis

The Vanish paper includes a security analysis that ex-
plicitly considers the threat from Sybil attacks against the
Vuze DHT. We have shown that the paper’s cost estimate—
$860,000 for a year-long attack—is two orders of magnitude
higher than the cost of our attacks. We now examine how the
Vanish paper arrives at this figure, and where the analysis
goes wrong.

The Vanish paper estimates the number of Sybils required
to compromise 25% of VDOs. Rather than experimenting
with the public Vuze network, the authors used their own
private deployment consisting of 8000 Vuze DHT clients.
For secret sharing parameters of k = 45 and n = 50, they
found that an attacker would need 820 Sybils. Extrapolating
this figure, they determined that attacking a network with
1M clients would require 87,000 Sybils.

This approach—simulating a much smaller network and

extrapolating—introduces considerable uncertainty and over-
estimates the actual difficulty. Our experiments show that
our attacks require roughly 70,000 effective Sybils to com-
promise 25% of VDOs under these parameters.

There are two problems with the 87,000 Sybil estimate.
The first is that it assumes the Sybils need to run continuously.
As we have shown with our hopping attack strategy, each
Sybil can run for as little as 3 minutes in each 8 hour period,
with little loss in coverage. Thus, only 544 Sybils need to
run concurrently to achieve the same effect as 87,000 Sybils
running continuously.

The second problem is that estimating the work needed
to recover 25% of VDOs provides only a lower bound on the
Sybils needed to recover greater fractions. Readers might
infer that recovering 90% would take many times more effort.
In fact, as we illustrate in Figure 1, the fraction of the DHT
that the attacker needs to observe increases only slightly,
from 86% to 93%. Our experiments show that, under these
parameters, we can compromise 90% of VDOs with 107,000
effective Sybils—only 53% more than are needed to com-
promise 25% of VDOs.

Based on their estimate that the attacker would need
87,000 Sybils, the Vanish authors calculate that a year-long
attack using EC2 would cost at least $860,000 for “process-
ing and Internet traffic alone.” This figure is not entirely
explained. One clue comes from the design of their exper-
iments, which were conducted in part on EC2. They used
the official Vuze DHT client, which is written in Java and
has high CPU and memory footprints. They found that the
limiting resource was memory—50 nodes would fit in 2 GB
of RAM. If we round up the memory available in a small
EC2 instance to 2 GB (it is actually 1.7 GB) and assume
reserved instance pricing, operating 87,000 nodes would cost
$854,000 a year for machine time, which the Vanish authors
may have rounded up to arrive at their figure.

One problem with this estimate is that an actual attacker
can write a much more efficient Vuze client, as we show with
our ClearView implementation. With our optimized client,
we can support thousands of concurrent Sybils in a single
small EC2 instance. Network transfer is the limiting cost,
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not memory or CPU. Another problem is that the amount of
traffic used for the attack is very difficult to estimate without
participating in the real network. It depends on empirical
factors like the amount of routing traffic and the rate of
stores. This adds further uncertainty to the Vanish paper’s
cost estimate.

Recovering 25% of VDOs with our most efficient attack
would cost less than $5000 per year—more than 100 times
less than the Vanish estimate. This illustrates the value of
attempting realistic attacks, even when models and analysis
seem to show that a system is secure.

5.2. Problems with the Vanish Design

Vanish relies on a security property that the Vuze DHT
was not designed to provide—resistance to crawling. Some-
times repurposing existing systems allows clever solutions
to security problems, but we believe it must be done with
extreme caution. Computer systems evolve to satisfy the
demands of their users and maintainers, so it is risky to rely
on them for security properties that are not important to their
primary users and maintainers. Even if the current Vuze
environment were more favorable to the security of Vanish,
the system might evolve in an unfavorable direction.

The worldwide scale of Vuze is essential to the security of
Vanish, and the defense needed by Vanish to thwart our Sybil
attack is not aligned with the priorities of Vuze’s main user
base. A large DHT with nodes run by independent people is
essential to Vanish’s guarantee that secret shares are widely
dispersed and safe from collusion. Anything less than a
world-wide DHT is unlikely to be secure for Vanish because
smaller communities are vulnerable to collusion attacks and
social engineering.

Our attacks are made easier, and Vanish suffers, because
the Vuze DHT replicates entries twenty times and actively
creates replicas periodically (and immediately to newly ar-
rived peers). These features are important for the primary
purpose of Vuze, which requires DHT entries to stay in the
DHT with high probability despite significant churn in the
node population. Here Vuze and Vanish are working at cross
purposes. It seems unlikely that Vuze would accept changes
that significantly reduce DHT reliability, just for the benefit
of Vanish.

At a fundamental level, public DHTs of the sort used by
Vuze are not well suited for keeping secrets. Any item can
be read by anyone who knows its ID, and the DHT readily
accepts membership from diverse, untrusted peers. The jury
is still out on whether the kind of distributed storage medium
needed to make Vanish secure, useful and efficient can be
designed.

5.3. Vanish and the Bounded Retrieval Model

In the Bounded Retrieval Model, first proposed by Dziem-
bowski [17], an attacker that compromises a machine can
only communicate a limited amount of material back to itself.
Multiple recent cryptographic systems were proposed in this
framework [9, 17]. The security of systems built both in this
model and the related Bounded Storage Model [28] depend
on the ability to make accurate estimations of the attacker’s
capabilities. If such an estimation is off by a factor of 10,
this will likely be devastating to the security of the overlying
system. In contrast, traditional encryption systems provide
a super-polynomial gap between the effort required to use
the system and that needed to break it. In these systems it is
easy to build in a reasonable “safety margin” when choosing
a security parameter.

The Vanish authors, in effect, show that their system is
secure under the condition that an attacker is bounded in
the amount of information he can retrieve from the DHT
in a given amount of time. Unfortunately, their estimates
of an attacker’s capabilities were off by about two orders
of magnitude. To our knowledge, Vanish is one of the first
systems to actually be implemented that rely on the bounded
retrieval model. Its shortcomings suggest that significant
caution is due when building such systems in the future.

6. Countermeasures

Future versions of Vanish and Vuze could adopt various
countermeasures against crawling attacks. While we discuss
several strategies for making these attacks more expensive,
it seems difficult to raise the cost enough to provide strong
resistance without sacrificing other security goals, usability,
or reliability.

Raising Vanish’s key recovery threshold The key shares
that Vanish stores in the DHT are produced using a k-of-
n secret sharing scheme. By default, 7 of 10 shares are
required to reconstruct the key. One defense would be for
Vanish to use a stronger values for k and n, such as requiring
99 of 100 shares.

This approach is problematic for two reasons. First, since
a small fraction of key shares are lost from the DHT be-
fore they expire due to churn in the network, raising the
recovery threshold will make more Vanish messages self-
destruct ahead of schedule. Second, an attacker could react
by scraping the DHT more completely.

Switching Vanish to a privately hosted DHT Future
implementations of Vanish could switch from the Vuze
DHT to a privately hosted DHT. One option would be
OpenDHT [26], a DHT system that, until recently, oper-
ated on a collection of PlanetLab nodes. OpenDHT allows
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anyone to store and retrieve values, but, since it is hosted on
a closed set of servers, Sybil-based crawling attacks are not
possible without insider access.

There are several problems for Vanish security using a
smaller-scale DHT, even one with special security features.
A DHT with a small user base or a single maintainer is
vulnerable to social collusion. In the case of OpenDHT, con-
vincing its single maintainer to add an anti-Vanish feature
would compromise the security of Vanish. It is also easier
to convince enough participants to subvert the security of a
system when the user base is small and drawn from a partic-
ular community (e.g., tens of academic users in the case of
OpenDHT). Lastly, a privately hosted DHT like OpenDHT
would essentially function as a trusted third party, and there
are simpler ways to implement Vanish-like behavior in ap-
plications where invoking a trusted third party is acceptable.

Adding client puzzles to Vuze Client puzzles have been
proposed as a defenses against Sybil attacks [25]. A simple
approach would be to require clients to perform an expensive
computation tied to the current date and their node ID. For
example, if Vuze required a daily computation that took one
minute on a small EC2 instance, this would impose a cost
of $0.34/year for each Sybil. To obtain 90% VDO recovery,
we need 107,000 effective Sybils (for k = 45 and n = 50),
so we would need to devote 74 EC2 instances to solving
puzzles. This would raise the cost of our attacks by about
$37,000 per year. Though this is a significant increase, it
only impacts attackers who actually pay for CPU time—an
attacker who controlled even a small botnet could easily
perform the puzzle computations. In addition, if the puzzles
were predictable, then an attacker might use precomputation
to solve several puzzles for a certain time period. While the
attacker might not be able to sustain this attack, all VDO
created during this time period would be vulnerable.

Detecting attackers Another possible defense is to try to
detect attackers and selectively block or penalize their in-
teractions with Vuze. One approach would be to monitor
peers for deviations from the Vuze protocol that distinguish
them from legitimate clients. This is currently easy to do
for our ClearView software, which omits certain function-
ality for ease of implementation, but attackers might try to
avoid detection by responding to requests more faithfully. A
second approach would be to monitor IP addresses that host
an unusual number of Vuze clients. Instrumenting the Vuze
bootstrap node or scanning the routing tables maintained by
peers in the network would detect such IPs.

We experimented with the latter approach by building a
tool called Peruze, a routing table scanner for the Vuze DHT.
Peruze enumerates the nodes in the network by breadth-first
search through the node ID space and iteratively dumping the
buckets in each node’s routing table. To extract the contacts

of bucket i on node N , Peruze sends N a FIND-NODE request
for N ’s ID with the ith bit from the left complemented. To
avoid overloading the network, it only sends one FIND-NODE
at a time to a given node. Peruze terminates the scan when it
has sent packets at a rate less than 10% of its maximum for
30 seconds. Peruze consumes very little bandwidth because
it avoids being incorporated into other nodes’ routing tables
and ignores all messages other than replies to its FIND-NODE
requests. Complete scans of the network take under an hour.

We found that, while the majority of IP addresses were
associated with only a single node, our Sybil machines were
each associated with thousands. Even after we terminated
the attacks, these traces persisted in the routing tables for
several hours.

Peruze also detected other EC2 nodes not controlled by
us with an unusual number of entries in the routing tables, as
well as a set of 10 machines at the University of Washington
that the Vanish authors confirmed are used to support the on-
line Vanish demonstration. This suggests that techniques like
Peruze can be used to detect monitoring and experimentation
on the Vuze network. Whether effective countermeasures
can be taken once attacks are detected is an open question.

Social networking Recent work has attempted to address
Sybil attacks by forming a trust-based network between
legitimate users. Systems such as SybilGuard [47], Sybil-
Limit [46], and SybilInfer [14] require that users designate
trusted peers. In general, Sybil nodes are excluded under the
assumption that they will not be able to make the same type
of connections as members of an actual social network.

Although these defenses may provide a means to detect
Sybil nodes, their effect on the performance and usability of
a large DHT such as Vuze is not clear, which could prevent
adoption. These approaches also require that users are not
willing to create trusted edges with potentially malicious
nodes. However, participants in social networks are often
willing to indicate relationships with untrusted others [39].

Restricting node IDs in Vuze The Vuze DHT implements
a basic Sybil defense by restricting how node IDs are as-
signed. The node ID is a function of the client’s IP address
and port, yielding 216 − 1 node IDs per IP. This allows us to
support 131,070 effective Sybils with only 2 IP addresses.

Future versions of the protocol may restrict the number
of IDs attainable from a single IP to 1999. (Contrary to
statements in the Vanish paper, this defense is not currently
active.) If this change were deployed, we would need 66 IP
addresses to obtain the same number of effective Sybils.

Even stronger restrictions might be possible. In our Vuze
routing table measurements, we found instances where single
IPs were supporting 30 or more clients; these appeared to
be legitimate ISPs using NAT. Vuze could limit each IP to,
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say, 64 identities. We would then require 2048 IP addresses
(four class-C blocks) to do the work of 2 addresses today.

These defenses might not have a significant effect on
the cost of our attack, since they do not actually increase
the required number of machines or the amount of traffic
generated. While it is currently difficult to use more than one
IP address on an EC2 instance, other ISPs may be willing
to rent out unused address blocks at low cost. Alternatively,
an attacker who controlled a small botnet would have ready
access to addresses.

Securely deploying such defenses on Vuze would take
time, due to the need to maintain backwards compatibility
with older clients. Until the defense is enforced, an attacker
could use an older version of the protocol to circumvent the
defense. The most recent Vuze source maintains backwards
compatibility to version 3.1.1.1, released more than a year
ago. Breaking such backwards compatibility would be a
significant, undesirable change to the usability of Vuze.

Regardless of what other countermeasures might be pro-
posed, security claims for Vanish, like all systems, should
be treated with respectful skepticism. Discussion of coun-
termeasures is useful, but, as usual, it is prudent to treat a
system as insecure until its security is firmly established.

7. Related Work

Sybil attacks are a well-known problem in systems re-
quiring participation from many different users [16]. Such
attacks can compromise the correctness of systems provid-
ing online voting [24], that vote on correct solution to a
distributed computation [48], or generate reputation from
user feedback [10]. Systems like Vanish that attempt to pro-
vide privacy or anonymity through a distributed system are
similarly vulnerable to Sybil attacks. For example, a Sybil at-
tack against the Tor overlay network can subvert anonymity
guarantees [4].

Here, we survey works not mentioned in the original
Vanish paper that are indicators about the threat of Sybil at-
tacks for monitoring DHTs. Approaches for crawling DHTs
that are similar to our attacks have been applied to other
Kademlia-family networks. Other work has attempted to
enumerate the nodes in the network, both for Vuze and for
other Kademlia-style systems.

DHT enumeration and monitoring Stutzbach and Re-
jaie developed Cruiser [42] in order to enumerate nodes
on the Gnutella network. Cruiser uses a master-slave ar-
chitecture, employing multiple desktop PCs to enumerate
the network in parallel. It also has an adaptive flow-control
algorithm based on CPU load in order to maximize the num-
ber of parallel connections. Stutzbach and Rejaie extended
Cruiser [43, 44] to enumerate nodes in the Kad DHT, which

is used by the popular eMule program and is also based on
Kademlia. Citing very long run times, they chose to enumer-
ate subnets based on fixing prefix bits of the node IDs. In
addition, their kFetch [43] tool efficiently downloads Kad
peers’ entire routing tables. Stutzbach and Rejaie’s work
focuses on accuracy, not cost-effectiveness. In a similar vein,
Steiner et al. created Blizzard [41], a fast Kad enumerator.
Unlike Cruiser, Blizzard uses one PC, keeps all state in mem-
ory, and can enumerate all nodes in the Kad network in 8
minutes.

Falkner et al. [18] previously measured the responsive-
ness, consistency, and performance of the Vuze DHT. Their
work used tens of instances of a version of the official Vuze
(then Azureus) client modified to collect statistics. Crosby
and Wallach [13] also profiled the Vuze DHT as well as the
“Mainline” DHT shared by many other BitTorrent clients.
They too used instrumented clients to obtain their measure-
ments, but only ran 11 concurrent clients. Several of the
parameters of the Vuze DHT have since been modified; in
particular, the message timeout and the number of concurrent
messages have both been halved.

Our node enumerator, Peruze, omits many optimizations
used in Cruiser and Blizzard for the sake of expedient imple-
mentation. In particular, its flow control algorithm is naive
and it is at least five times slower than Blizzard. Unlike
previous work, Peruze terminates when the rate of outgoing
traffic drops significantly, which indicates diminishing re-
turns from further scanning, rather than continuing in order
to obtain more complete measurements.

Crawling DHTs Mistral [40] is a crawler for Kad. It
carries out a Sybil attack on Kad by efficiently implementing
many Sybils on one machine. Instead of using the standard
Kad bootstrap, Mistral uses Blizzard to discover peers and
then contacts them directly. Mistral does not attempt to
discover content through replication; instead, the Sybil nodes
always redirect routing traffic to other Sybils to maximize
the amount of traffic captured. Mistral is only capable of
spying on an 8-bit prefix (i.e., 1

256 ) of Kad at a time.
Montra [30] is a crawler for Kad that improves on Mistral

by minimizing disruption to the DHT. Like Mistral, it uses a
crawler (Cruiser) to discover nodes in the network. Unlike
Mistral, Montra discovers content through the replication
mechanism by targeting peers individually. At the time
Montra was developed, Kad peers were permitted to choose
their IDs arbitrarily, so each of Montra’s minimally visible
monitors can set its ID to differ from that of its target peer
only in the least significant bit, ensuring replication of stored
data. Montra minimizes load and disruption by responding
only to each monitor’s target peer. However, Montra is not
compatible with the new Sybil attack protections in Kad
described in [11] that prevent nodes from choosing their Kad
IDs arbitrarily.
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Goel et al. [22] point out that choosing node IDs in DHTs
by hashing the IP address and a salt facilitates the Sybil
attack because attackers can choose the salt freely. This
observation extends trivially to ports in the Vuze DHT.

Our advanced hopping attack system, ClearView, is dis-
tinct from both Mistral and Montra, although it is broadly
similar in that it is an efficient implementation allowing
many Sybils to run on a single machine. Like Montra, it
learns about stored values through replication, but its Sybils
join the network through the standard bootstrap procedure.
ClearView attempts to restrict its visibility by failing to reply
to certain messages, but does not go to the same extent as
Montra. Also unlike these previous works, our attacks target
the Vuze network and are optimized for attacking Vanish.

8. Conclusion

The security guarantees that Vanish sets out to provide
would be extremely useful, but, unfortunately, the system in
its current form does not provide them in practice. As we
have shown, efficient Sybil attacks can recover the keys to
almost all Vanish data objects at low cost. Changes to the
Vanish implementation and the underlying Vuze DHT might
make Sybil attacks somewhat more expensive, but it seems
doubtful that such defenses would make the system suffi-
ciently secure. While we would like to see Vanish succeed,
we are skeptical that it can be implemented securely.

Postscript

We shared these findings with the Vanish team, and, sub-
sequent to the submission of this paper, they released a new
version of Vanish [21] and a report [19] detailing potential
new defenses.

They propose two main countermeasures. The first is to
store Vanish keys on both the Vuze DHT and OpenDHT so
that data from both DHTs would be needed to recover the key.
They implemented this defense in the new Vanish software
release, version 0.2. The second defense is to modify the
Vuze DHT to disable the replicate-on-join behavior and use
less aggressive data replication. (To minimize the impact on
Vuze, they suggest that these changes could be selectively
enabled for Vanish data.) The Vanish authors are working
with the makers of Vuze to implement this defense.

Fully evaluating these proposals is a subject for future
work, but we offer an initial perspective here. Using both
OpenDHT and Vuze might raise the bar for an attacker, but
at best it can provide the maximum security derived from
either system—if both DHTs are insecure, then the hybrid
will also be insecure. OpenDHT is controlled by a single
maintainer, who essentially functions as a trusted third party
in this arrangement. It is also susceptible to attacks on the

roughly two hundred PlanetLab nodes on which it runs, most
of which are housed at low-security research institutions.
The new Vanish technical report acknowledged OpenDHT’s
limitations: “For Vanish, OpenDHT seemed a poor fit for a
number of reasons” [19, Section 3.2]. Using both Vuze and
OpenDHT seems unlikely to be a much better fit.

Altering the behavior of the Vuze DHT might make our
attacks more expensive, but it is difficult to gauge how much
more expensive until these changes are deployed. Under-
standing their effects on Vanish (and on overall DHT perfor-
mance) will require further investigation, and it is possible
that entirely new attacks will emerge. While Vuze’s willing-
ness to adopt changes for the benefit of Vanish is laudable,
it is also a reminder that the Vuze DHT is effectively under
the control of a single party, and that future changes could
unintentionally or maliciously degrade Vanish’s security.

The first iteration of Vanish was broken in a relatively
short time. The proposed new defenses are interesting and
merit further investigation, but, for now, Vanish’s security
should be viewed with skepticism. Whether DHTs are the
best choice for key-share storage remains an open question.
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